scholarly journals On solvability of one class of third order differential equations

2021 ◽  
Vol 73 (3) ◽  
pp. 314-328
Author(s):  
B. T. Bilalov ◽  
M. I. Ismailov ◽  
Z. A. Kasumov

UDC 517.9 One-dimensional mixed problem for one class of third order partial differential equation with nonlinear right-hand side is considered. The concept of generalized solution for this problem is introduced. By the Fourier method, the problem of existence and uniqueness of generalized solution for this problem is reduced to the problem of solvability of the countable system of nonlinear integro-differential equations. Using Bellman's inequality, the uniqueness of generalized solution is proved. Under some conditions on initial functions and the right-hand side of the equation, the existence theorem for the generalized solution is proved using the method of successive approximations.

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Joël Blot ◽  
Mamadou I. Koné

AbstractThe aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of Hale and Verduyn Lunel [9] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.


Author(s):  
Адам Дамирович Ушхо

Доказывается, что система дифференциальных уравнений, правые части которой представляют собой полиномы второй степени, не имеет предельных циклов, если в ограниченной части фазовой плоскости она имеет только два состояния равновесия и при этом они являются состояниями равновесия второй группы. It is proved that a system of differential equations, the right-hand sides of which are second-order polynomials, has no limit cycles if it has only two equilibrium states in the bounded part of the phase plane, and they are the equilibrium states of the second group.


1975 ◽  
Vol 77 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H. P. F. Swinnerton-Dyer

During the last thirty years an immense amount of research has been done on differential equations of the formwhere ε > 0 is small. It is usually assumed that the perturbing term on the right-hand side is a ‘good’ function of its arguments and that its dependence on t is purely trigonometric; this means that there is an expansion of the formwhere the ωn are constants, and that one may impose any conditions on the rate of convergence of the series which turn out to be convenient. Without loss of generality we can assumeand for convenience we shall sometimes write ω0 = 0. Often f is assumed to be periodic in t, in which case it is implicit that the period is independent of x and ẋ (We can also allow f to depend on ε, provided it does so in a sensible manner.)


1848 ◽  
Vol 138 ◽  
pp. 31-54 ◽  

If the operation of differentiation with regard to the independent variable x be denoted by the symbol D, and if ϕ (D) represent any function of D composed of integral powers positive or negative, or both positive and negative, it may easily be shown, that ϕ (D){ψ x. u } = ψ x. ϕ (D) u + ψ' x. ϕ' (D) u + ½ψ" x. ϕ" (D) u + 1/2.3 ψ"' x. ϕ"' (D) u + . . . (1.) and that ϕx .ψ(D) u = ψ(D){ ϕx. u } - ψ'(D){ ϕ'x. u } + ½ψ"(D){ ϕ"x. u } - 1/2.3ψ"'(D){ ϕ"'x. u } + . . (2.) and these general theorems are expressions of the laws under which the operations of differentiation, direct and inverse, combine with those operations which are de­noted by factors, functions of the independent variable. It will be perceived that the right-hand side of each of these equations is a linear differential expression; and whenever an expression assumes or can be made to assume either of these forms, its solution is determined; for the equations ϕ (D){ψ x. u } = P and ϕx . ψ(D) u = P are respectively equivalent to u = (ψ x ) -1 { ϕ (D)} -1 P and u = {ψ(D)} -1 (( ϕx ) -1 P).


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ho Vu

We consider the random fuzzy differential equations (RFDEs) with impulses. Using Picard method of successive approximations, we shall prove the existence and uniqueness of solutions to RFDEs with impulses under suitable conditions. Some of the properties of solution of RFDEs with impulses are studied. Finally, an example is presented to illustrate the results.


2017 ◽  
Vol 17 (8) ◽  
pp. 59-68
Author(s):  
E.A. Novikov

(M,k)-methods for solving stiff problems, in which on each step two times the right-hand side of the system of differential equations is calculated are investigated. It is shown that the maximum order of accuracy of the L-stable (m,2)-method is equal to four. (4,2)-method of maximal order is built.


2013 ◽  
Vol 23 (3) ◽  
pp. 355-365
Author(s):  
Aboubacar Moussa ◽  
Mikhail Nikolskii

In this paper, the nonlinear R. Brockett integrator with small nonlinear addition to the right-hand side of the corresponding differential equations is considered. More precisely, investigating the possibility to estimate from within the corresponding reachable set, we have obtained an efficient form of the ellipsoidal estimation from within. We used our previous results on the similar theme.


Sign in / Sign up

Export Citation Format

Share Document