scholarly journals L-STABLE (4,2)-METHOD OF THE FOURTH ORDER FOR SOLVING STIFF PROBLEMS

2017 ◽  
Vol 17 (8) ◽  
pp. 59-68
Author(s):  
E.A. Novikov

(M,k)-methods for solving stiff problems, in which on each step two times the right-hand side of the system of differential equations is calculated are investigated. It is shown that the maximum order of accuracy of the L-stable (m,2)-method is equal to four. (4,2)-method of maximal order is built.

Author(s):  
Адам Дамирович Ушхо

Доказывается, что система дифференциальных уравнений, правые части которой представляют собой полиномы второй степени, не имеет предельных циклов, если в ограниченной части фазовой плоскости она имеет только два состояния равновесия и при этом они являются состояниями равновесия второй группы. It is proved that a system of differential equations, the right-hand sides of which are second-order polynomials, has no limit cycles if it has only two equilibrium states in the bounded part of the phase plane, and they are the equilibrium states of the second group.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Joël Blot ◽  
Mamadou I. Koné

AbstractThe aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of Hale and Verduyn Lunel [9] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.


2020 ◽  
Vol 164 ◽  
pp. 02014
Author(s):  
Vera Petelina

The article is devoted to the determination of second-order perturbations in rectangular coordinates and components of the body motion to be under study. The main difficulty in solving this problem was the choice of a system of differential equations of perturbed motion, the coefficients of the projections of the perturbing acceleration are entire functions with respect to the independent regularizing variable. This circumstance allows constructing a unified algorithm for determining perturbations of the second and higher order in the form of finite polynomials with respect to some regularizing variables that are selected at each stage of approximation. The number of approximations is determined by the given accuracy. It is rigorously proven that the introduction of a new regularizing variable provides a representation of the right-hand sides of the system of differential equations of perturbed motion by finite polynomials. Special points are used to reduce the degree of approximating polynomials, as well as to choose regularizing variables.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1248 ◽  
Author(s):  
Omar Bazighifan ◽  
Osama Moaaz ◽  
Rami Ahmad El-Nabulsi ◽  
Ali Muhib

The aim of this paper is to study the oscillatory properties of 4th-order neutral differential equations. We obtain some oscillation criteria for the equation by the theory of comparison. The obtained results improve well-known oscillation results in the literate. Symmetry plays an important role in determining the right way to study these equation. An example to illustrate the results is given.


1975 ◽  
Vol 77 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H. P. F. Swinnerton-Dyer

During the last thirty years an immense amount of research has been done on differential equations of the formwhere ε > 0 is small. It is usually assumed that the perturbing term on the right-hand side is a ‘good’ function of its arguments and that its dependence on t is purely trigonometric; this means that there is an expansion of the formwhere the ωn are constants, and that one may impose any conditions on the rate of convergence of the series which turn out to be convenient. Without loss of generality we can assumeand for convenience we shall sometimes write ω0 = 0. Often f is assumed to be periodic in t, in which case it is implicit that the period is independent of x and ẋ (We can also allow f to depend on ε, provided it does so in a sensible manner.)


1848 ◽  
Vol 138 ◽  
pp. 31-54 ◽  

If the operation of differentiation with regard to the independent variable x be denoted by the symbol D, and if ϕ (D) represent any function of D composed of integral powers positive or negative, or both positive and negative, it may easily be shown, that ϕ (D){ψ x. u } = ψ x. ϕ (D) u + ψ' x. ϕ' (D) u + ½ψ" x. ϕ" (D) u + 1/2.3 ψ"' x. ϕ"' (D) u + . . . (1.) and that ϕx .ψ(D) u = ψ(D){ ϕx. u } - ψ'(D){ ϕ'x. u } + ½ψ"(D){ ϕ"x. u } - 1/2.3ψ"'(D){ ϕ"'x. u } + . . (2.) and these general theorems are expressions of the laws under which the operations of differentiation, direct and inverse, combine with those operations which are de­noted by factors, functions of the independent variable. It will be perceived that the right-hand side of each of these equations is a linear differential expression; and whenever an expression assumes or can be made to assume either of these forms, its solution is determined; for the equations ϕ (D){ψ x. u } = P and ϕx . ψ(D) u = P are respectively equivalent to u = (ψ x ) -1 { ϕ (D)} -1 P and u = {ψ(D)} -1 (( ϕx ) -1 P).


Author(s):  
Yaroslav Pelekh ◽  
Andrii Kunynets ◽  
Halyna Beregova ◽  
Tatiana Magerovska

Numerical methods for solving the initial value problem for ordinary differential equations are proposed. Embedded methods of order of accuracy 2(1), 3(2) and 4(3) are constructed. To estimate the local error, two-sided calculation formulas were used, which give estimates of the main terms of the error without additional calculations of the right-hand side of the differential equation, which favorably distinguishes them from traditional two-sided methods of the Runge- Kutta type.


2013 ◽  
Vol 23 (3) ◽  
pp. 355-365
Author(s):  
Aboubacar Moussa ◽  
Mikhail Nikolskii

In this paper, the nonlinear R. Brockett integrator with small nonlinear addition to the right-hand side of the corresponding differential equations is considered. More precisely, investigating the possibility to estimate from within the corresponding reachable set, we have obtained an efficient form of the ellipsoidal estimation from within. We used our previous results on the similar theme.


Sign in / Sign up

Export Citation Format

Share Document