scholarly journals Legendre curves and the singularities of ruled surfaces obtained by using rotation minimizing frame

2021 ◽  
Vol 73 (5) ◽  
pp. 589-601
Author(s):  
M. Bekar ◽  
F. Hathout ◽  
Y. Yayli

UDC 514.7 In this paper, Legendre curves in unit tangent bundle are given using rotation minimizing vector fields. Ruled surfaces corresponding to these curves are represented. Singularities of these ruled surfaces are also analyzed and classified.

1992 ◽  
Vol 12 (2) ◽  
pp. 227-232
Author(s):  
Leon W. Green

AbstractLet X, H+, H− be vector fields tangent, respectively, to an Anosov flow and its expanding and contracting foliations in a compact three-dimensional manifold, with γ, α+, α− one forms dual to them. If α+([H+, H−]) = α−([H+, H−]) and γ([H+, H−]) = α−([X, H−]) − α+([X, H+]), then the manifold has the structure of the unit tangent bundle of a Riemannian orbifold with geodesic flow field X.


2016 ◽  
Vol 16 (3) ◽  
Author(s):  
Shun’ichi Honda ◽  
Masatomo Takahashi

AbstractA framed curve in the Euclidean space is a curve with a moving frame. It is a generalization not only of regular curves with linear independent condition, but also of Legendre curves in the unit tangent bundle. We define smooth functions for a framed curve, called the curvature of the framed curve, similarly to the curvature of a regular curve and of a Legendre curve. Framed curves may have singularities. The curvature of the framed curve is quite useful to analyse the framed curves and their singularities. In fact, we give the existence and the uniqueness for the framed curves by using their curvature. As applications, we consider a contact between framed curves, and give a relationship between projections of framed space curves and Legendre curves.


2021 ◽  
pp. 1-26
Author(s):  
THOMAS METTLER ◽  
GABRIEL P. PATERNAIN

Abstract We associate a flow $\phi $ with a solution of the vortex equations on a closed oriented Riemannian 2-manifold $(M,g)$ of negative Euler characteristic and investigate its properties. We show that $\phi $ always admits a dominated splitting and identify special cases in which $\phi $ is Anosov. In particular, starting from holomorphic differentials of fractional degree, we produce novel examples of Anosov flows on suitable roots of the unit tangent bundle of $(M,g)$ .


2008 ◽  
Vol 05 (07) ◽  
pp. 1109-1135 ◽  
Author(s):  
NABIL. L. YOUSSEF ◽  
A. M. SID-AHMED

In this paper, we study Absolute Parallelism (AP-) geometry on the tangent bundle TM of a manifold M. Accordingly, all geometric objects defined in this geometry are not only functions of the positional argument x, but also depend on the directional argument y. Moreover, many new geometric objects, which have no counterpart in the classical AP-geometry, emerge in this different framework. We refer to such a geometry as an Extended Absolute Parallelism (EAP-) geometry. The building blocks of the EAP-geometry are a nonlinear connection (assumed given a priori) and 2n linearly independent vector fields (of special form) defined globally on TM defining the parallelization. Four different d-connections are used to explore the properties of this geometry. Simple and compact formulae for the curvature tensors and the W-tensors of the four defined d-connections are obtained, expressed in terms of the torsion and the contortion tensors of the EAP-space. Further conditions are imposed on the canonical d-connection assuming that it is of Cartan type (resp. Berwald type). Important consequences of these assumptions are investigated. Finally, a special form of the canonical d-connection is studied under which the classical AP-geometry is recovered naturally from the EAP-geometry. Physical aspects of some of the geometric objects investigated are pointed out and possible physical implications of the EAP-space are discussed, including an outline of a generalized field theory on the tangent bundle TM of M.


2021 ◽  
Vol 62 ◽  
pp. 53-66
Author(s):  
Fethi Latti ◽  
◽  
Hichem Elhendi ◽  
Lakehal Belarbi

In the present paper, we introduce a new class of natural metrics on the tangent bundle $TM$ of the Riemannian manifold $(M,g)$ denoted by $G^{f,h}$ which is named a twisted Sasakian metric. A necessary and sufficient conditions under which a vector field is harmonic with respect to the twisted Sasakian metric are established. Some examples of harmonic vector fields are presented as well.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 72
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri

In this paper, we study natural paracontact magnetic trajectories in the unit tangent bundle, i.e., those that are associated to g-natural paracontact metric structures. We characterize slant natural paracontact magnetic trajectories as those satisfying a certain conservation law. Restricting to two-dimensional base manifolds of constant Gaussian curvature and to Kaluza–Klein type metrics on their unit tangent bundles, we give a full classification of natural paracontact slant magnetic trajectories (and geodesics).


2017 ◽  
Vol 11 (01) ◽  
pp. 1850008 ◽  
Author(s):  
Murat Bekar ◽  
Fouzi Hathout ◽  
Yusuf Yayli

Let [Formula: see text] be a unit tangent bundle of Minkowski surface [Formula: see text] endowed with the pseudo-Riemannian induced Sasaki metric. In this present paper, we studied the N-Legendre and N-slant curves in which the inner product of its normal vector and Reeb vector is zero and nonzero constant, respectively, in [Formula: see text] and several important characterizations of these curves are given.


Sign in / Sign up

Export Citation Format

Share Document