Single Image Dehazing of Multiscale Deep-Learning Based on Dual-Domain Decomposition

2020 ◽  
Vol 40 (2) ◽  
pp. 0210003
Author(s):  
陈永 Chen Yong ◽  
郭红光 Guo Hongguang ◽  
艾亚鹏 Ai Yapeng
Author(s):  
Sudeep D. Thepade ◽  
Ajinkya A. Patil ◽  
Chaitanya M. Nawale ◽  
Chinmayee D. Taralkar ◽  
Mehul V. Suryavanshi

Author(s):  
Aiping Yang ◽  
Haixin Wang ◽  
Zhong Ji ◽  
Yanwei Pang ◽  
Ling Shao

Recently, deep learning-based single image dehazing method has been a popular approach to tackle dehazing. However, the existing dehazing approaches are performed directly on the original hazy image, which easily results in image blurring and noise amplifying. To address this issue, the paper proposes a DPDP-Net (Dual-Path in Dual-Path network) framework by employing a hierarchical dual path network. Specifically, the first-level dual-path network consists of a Dehazing Network and a Denoising Network, where the Dehazing Network is responsible for haze removal in the structural layer, and the Denoising Network deals with noise in the textural layer, respectively. And the second-level dual-path network lies in the Dehazing Network, which has an AL-Net (Atmospheric Light Network) and a TM-Net (Transmission Map Network), respectively. Concretely, the AL-Net aims to train the non-uniform atmospheric light, while the TM-Net aims to train the transmission map that reflects the visibility of the image. The final dehazing image is obtained by nonlinearly fusing the output of the Denoising Network and the Dehazing Network. Extensive experiments demonstrate that our proposed DPDP-Net achieves competitive performance against the state-of-the-art methods on both synthetic and real-world images.


2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


Author(s):  
Geet Sahu ◽  
Ayan Seal ◽  
Ondrej Krejcar ◽  
Anis Yazidi

2021 ◽  
Vol 30 ◽  
pp. 1100-1115
Author(s):  
Pengyue Li ◽  
Jiandong Tian ◽  
Yandong Tang ◽  
Guolin Wang ◽  
Chengdong Wu

Sign in / Sign up

Export Citation Format

Share Document