A new family of two-dimensional triple-codeweight asymmetric optical orthogonal code for OCDMA networks

2009 ◽  
Vol 7 (2) ◽  
pp. 102-105 ◽  
Author(s):  
殷洪玺 Hongxi Yin ◽  
梁巍 Wei Liang ◽  
马乐 Le Ma ◽  
覃丽巧 Liqiao Qin
2016 ◽  
Vol 37 (2) ◽  
Author(s):  
Jianhua Ji ◽  
Wenjun Li ◽  
Hongxia Zheng

AbstractA new two-dimensional optical orthogonal code (OOC) named EQC/MOCS is constructed, using Extended Quadratic Congruence (EQC) code for time spreading and modified one-coincidence sequence (MOCS) for wavelength hopping. Compared with EQC/Prime code (PC), the number of wavelengths for EQC/MOCS is not limited to a prime number. Compared with EQC/OCS, the length of MOCS need not be expanded to the same length of EQC. EQC/MOCS can be constructed flexibly, and also has larger code cardinality.


2017 ◽  
Author(s):  
Varun Bheemireddy

The two-dimensional(2D) materials are highly promising candidates to realise elegant and e cient transistor. In the present letter, we conjecture a novel co-planar metal-insulator-semiconductor(MIS) device(capacitor) completely based on lateral 2D materials architecture and perform numerical study of the capacitor with a particular emphasis on its di erences with the conventional 3D MIS electrostatics. The space-charge density features a long charge-tail extending into the bulk of the semiconductor as opposed to the rapid decay in 3D capacitor. Equivalently, total space-charge and semiconductor capacitance densities are atleast an order of magnitude more in 2D semiconductor. In contrast to the bulk capacitor, expansion of maximum depletion width in 2D semiconductor is observed with increasing doping concentration due to lower electrostatic screening. The heuristic approach of performance analysis(2D vs 3D) for digital-logic transistor suggest higher ON-OFF current ratio in the long-channel limit even without third dimension and considerable room to maximise the performance of short-channel transistor. The present results could potentially trigger the exploration of new family of co-planar at transistors that could play a signi significant role in the future low-power and/or high performance electronics.<br>


2021 ◽  
Vol 85 (2) ◽  
pp. 113-117
Author(s):  
A. M. Zarezin ◽  
P. A. Gusikhin ◽  
V. M. Muravev ◽  
S. I. Gubarev ◽  
I. V. Kukushkin

Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


2020 ◽  
Vol 7 (8) ◽  
pp. 200456 ◽  
Author(s):  
Pritom J. Bora ◽  
T. R. Suresh Kumar ◽  
Daniel Q. Tan

MXene, the new family of two-dimensional materials having numerous nanoscale layers, is being considered as a novel microwave absorption material. However, MXene/functionalized MXene-loaded polymer nanocomposites exhibit narrow reflection loss (RL) bandwidth (RL less than or equal to −10 dB). In order to enhance the microwave absorption bandwidth of MXene hybrid-matrix materials, for the first time, macroscopic design approach is carried out for TiO 2 -Ti 3 C 2 T x MXene and Fe 3 O 4 @TiO 2 -Ti 3 C 2 T x MXene hybrids through simulation. The simulated results indicate that use of pyramidal meta structure of MXene can significantly tune the RL bandwidth. For optimized MXene hybrid-matrix materials pyramid pattern, the bandwidth enhances to 3–18 GHz. Experimental RL value well matched with the simulated RL. On the other hand, the optimized Fe 3 O 4 @TiO 2 -Ti 3 C 2 T x hybrid exhibits two specific absorption bandwidths (minimum RL value - −47 dB). Compared with other two-dimensional nanocomposites such as graphene or Fe 3 O 4 -graphene, MXene hybrid-matrix materials show better microwave absorption bandwidth in macroscopic pattern.


Optik ◽  
2009 ◽  
Vol 120 (18) ◽  
pp. 959-962 ◽  
Author(s):  
Jaswinder Singh ◽  
Maninder Lal Singh

1998 ◽  
Vol 16 (4) ◽  
pp. 501-508 ◽  
Author(s):  
E.S. Shivaleela ◽  
K.N. Sivarajan ◽  
A. Selvarajan

Sign in / Sign up

Export Citation Format

Share Document