Single-photon emitters in van der Waals materials

2019 ◽  
Vol 17 (2) ◽  
pp. 020011 ◽  
Author(s):  
Jiandong Qiao Jiandong Qiao ◽  
Fuhong Mei Fuhong Mei ◽  
Yu Ye Yu Ye
2021 ◽  
Vol 118 (32) ◽  
pp. e2105468118
Author(s):  
Hongli Guo ◽  
Xu Zhang ◽  
Gang Lu

Excitons can be trapped by moiré potentials in van der Waals (vdW) heterostructures, forming ordered arrays of quantum dots. Excitons can also be trapped by defect potentials as single photon emitters. While the moiré and defect potentials in vdW heterostructures have been studied separately, their interplay remains largely unexplored. Here, we perform first-principles calculations to elucidate the interplay of the two potentials in determining the optoelectronic properties of twisted MoS2/WS2 heterobilayers. The binding energy, charge density, localization, and hybridization of the moiré excitons can be modulated by the competition and cooperation of the two potentials. Their interplay can also be tuned by vertical electric fields, which can either de-trap the excitons or strongly localize them. One can further tailor the interplay of the two potentials via defect engineering to create one-dimensional exciton lattices with tunable orientations. Our work establishes defect engineering as a promising strategy to realize on-demand optoelectronic responses.


Author(s):  
Pankaj K. Jha ◽  
Ghazaleh K. Shirmanesh ◽  
Anna Mitskovets ◽  
Arun Nagpal ◽  
Hamidreza Akbari ◽  
...  

2021 ◽  
Vol 7 (43) ◽  
Author(s):  
Jae-Pil So ◽  
Ha-Reem Kim ◽  
Hyeonjun Baek ◽  
Kwang-Yong Jeong ◽  
Hoo-Cheol Lee ◽  
...  

2021 ◽  
Vol 125 (6) ◽  
pp. 1325-1335 ◽  
Author(s):  
Cesar Jara ◽  
Tomáš Rauch ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Ariel Norambuena ◽  
...  

Author(s):  
Yongzhou Xue ◽  
Tongbo Wei ◽  
Hongliang Chang ◽  
Dongdong Liang ◽  
Xiuming Dou ◽  
...  

2021 ◽  
pp. 2102917
Author(s):  
Ruijin Sun ◽  
Shifeng Jin ◽  
Jun Deng ◽  
Munan Hao ◽  
Xin Zhong ◽  
...  

2016 ◽  
Vol 8 (11) ◽  
pp. 7590-7594 ◽  
Author(s):  
Kerem Bray ◽  
Russell Sandstrom ◽  
Christopher Elbadawi ◽  
Martin Fischer ◽  
Matthias Schreck ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3557-3565
Author(s):  
Guorui Zhang ◽  
Ying Gu ◽  
Qihuang Gong ◽  
Jianjun Chen

AbstractDue to small optical mode volumes and linear polarizations of surface-plasmon-polariton (SPP) resonant modes in metallic antennas, it is very difficult to obtain complex emission patterns and polarizations for single-photon emitters. Herein, nonresonant enhancement in a silver nanowire is used to both enhance emission rates and extract a z-oriented dipole, and then the symmetry of metallic nanostructures is proposed to tailor the patterns and polarizations of single-photon emission. The emission pattern of a quantum dot located close to a metallic nanostructure with a symmetric axis is split into multiple flaps. The number of splitting flaps is equal to the order of the symmetric axis. Moreover, the electric vectors of the emitted photons become centrally symmetric about the symmetric axis. The above phenomena are well explained by both a simulation and an image dipole model. The structural-symmetry-tailoring mechanism may open up a new avenue in the design of multifunctional and novel quantum-plasmonic devices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Qianfan Nie ◽  
Caifang Gao ◽  
Feng-Shou Yang ◽  
Ko-Chun Lee ◽  
Che-Yi Lin ◽  
...  

AbstractRecently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆Wn) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.


Sign in / Sign up

Export Citation Format

Share Document