Tunable coherent perfect absorption in three-dimensional Dirac semimetal films

2021 ◽  
Vol 19 (8) ◽  
pp. 081601
Author(s):  
Jipeng Wu ◽  
Jie Tang ◽  
Rongzhou Zeng ◽  
Xiaoyu Dai ◽  
Yuanjiang Xiang
2020 ◽  
Vol 37 (7) ◽  
pp. 1987
Author(s):  
Ting Zhou ◽  
Panpan Fang ◽  
Shihao Ban ◽  
Yong Li ◽  
Haiyu Meng ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 103688
Author(s):  
Wenjing Kang ◽  
Qinggang Gao ◽  
Linlin Dai ◽  
Yanliang Zhang ◽  
Huiyun Zhang ◽  
...  

2019 ◽  
Vol 9 (9) ◽  
pp. 3649
Author(s):  
Kezheng Tang ◽  
Yi Su ◽  
Meng Qin ◽  
Xiang Zhai ◽  
Lingling Wang

ACS Photonics ◽  
2021 ◽  
Author(s):  
Yeonghoon Jin ◽  
Hyung Suk Kim ◽  
Junghoon Park ◽  
Seunghyup Yoo ◽  
Kyoungsik Yu

ACS Photonics ◽  
2021 ◽  
Author(s):  
Xiaomei Yao ◽  
Shengxi Zhang ◽  
Qiang Sun ◽  
Peizong Chen ◽  
Xutao Zhang ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Hemian Yi ◽  
Zhijun Wang ◽  
Chaoyu Chen ◽  
Youguo Shi ◽  
Ya Feng ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Philipp Grimm ◽  
Gary Razinskas ◽  
Jer-Shing Huang ◽  
Bert Hecht

Abstract Coherent perfect absorption (CPA) describes the absence of all outgoing modes from a lossy resonator, driven by lossless incoming modes. Here, we show that for nanoresonators that also exhibit radiative losses, e.g., plasmonic nanoantennas, a generalized version of CPA (gCPA) can be applied. In gCPA outgoing modes are suppressed only for a subset of (guided plasmonic) modes while other (radiative) modes are treated as additional loss channels - a situation typically referred to as perfect impedance matching. Here we make use of gCPA to show how to achieve perfect impedance matching between a single nanowire plasmonic waveguide and a plasmonic nanoantenna. Antennas with both radiant and subradiant characteristics are considered. We further demonstrate potential applications in background-free sensing.


2018 ◽  
Vol 94 (1) ◽  
pp. 015502
Author(s):  
Sanjeeb Dey ◽  
Suneel Singh

2020 ◽  
Vol 49 (3) ◽  
pp. 342-350
Author(s):  
Md. Alamgir Badsha ◽  
Md. Humaun Kabir ◽  
Mohammad Abdur Rashid

Sign in / Sign up

Export Citation Format

Share Document