COD detection system of full spectrum based on fiber-optic sensing

2015 ◽  
Vol 41 (3) ◽  
pp. 229-232
Author(s):  
沈建华 SHEN Jianhua ◽  
许键 XU Jian ◽  
黄杰 HUANG Jie ◽  
李本冲 LI Benchong ◽  
杨馥瑞 YANG Furui
2021 ◽  
Author(s):  
Mischa Megens ◽  
Merel D. Leistikow ◽  
Anneke van Dusschoten ◽  
Martin B. van der Mark ◽  
Jeroen J.L. Horikx ◽  
...  

2013 ◽  
Vol 562-565 ◽  
pp. 1008-1015 ◽  
Author(s):  
Shu Tao Wang ◽  
Peng Wei Zhang ◽  
Quan Min Zhu

Based on DFBLD (Distributed Feedback Laser Diode) and harmonic detection technique, a novel fiber-optic methane detection system is constructed. The system can be applied to broad-range concentration detection of methane. Based on the approximation express of the law of Beer-Lambert, detection of methane with various concentration from 0% to 20% is completed using subtraction of background and ratio processing method, as the atmosphere surroundings are treated as background noise. The direct absorption spectra for various concentration is measured using GRIN gas cell, combined with DFBLD. The R5 line of the 2v3 band of methane is selected as the absorption peak. The system is tested online during gas mixing process and the linear relationship between system indication and concentration variation is validated. Also the stability and dynamic response characteristics are confirmed by the experiments. The sensitivity of the system can be adjusted according to the concentration level of various field environments by changing the prism distance using step motor. In the range of 0% to 20% the sensitivity of methane detection can arrive at 0.001%. So the system can be applied to various application fields and adopted as monitoring instruments for coalmine tunnel and natural pipeline.


2021 ◽  
Author(s):  
Abdulaziz Al-Qasim ◽  
Sharidah Alabduh ◽  
Muhannad Alabdullateef ◽  
Mutaz Alsubhi

Abstract Fiber-optic sensing (FOS) technology is gradually becoming a pervasive tool in the monitoring and surveillance toolkit for reservoir engineers. Traditionally, sensing with fiber optic technology in the form of distributed temperature sensing (DTS) or distributed acoustic sensing (DAS), and most recently distributed strain sensing (DSS), distributed flow sensing (DFS) and distributed pressure sensing (DPS) were done with the fiber being permanently clamped either behind the casing or production tubing. Distributed chemical sensing (DCS) is still in the development phase. The emergence of the composite carbon-rod (CCR) system that can be easily deployed in and out of a well, similar to wireline logging, has opened up a vista of possibilities to obtain many FOS measurements in any well without prior fiber-optic installation. Currently, combinations of distributed FOS data are being used for injection management, well integrity monitoring, well stimulation and production performance optimization, thermal recovery management, etc. Is it possible to integrate many of the distributed FOS measurements in the CCR or a hybrid combination with wireline to obtain multiple measurements with one FOS cable? Each one of FOS has its own use to get certain data, or combination of FOS can be used to make a further interpretation. This paper reviews the state of the art of the FOS technology and the gamut of current different applications of FOS data in the oil and gas (upstream) industry. We present some results of traditional FOS measurements for well integrity monitoring, assessing production and injection flow profile, cross flow behind casing, etc. We propose some nontraditional applications of the technology and suggest a few ways through. Which the technology can be deployed for obtaining some key reservoir description and dynamics data for reservoir performance optimization.


2020 ◽  
Author(s):  
G. Jin ◽  
A. Titov ◽  
Y. Fan ◽  
A. Tura ◽  
K. Kutun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document