Semiconductor arrester solid field distortion three-electrode discharge switch

2012 ◽  
Vol 24 (4) ◽  
pp. 868-870
Author(s):  
赵越 Zhao Yue ◽  
王传伟 Wang Chuanwei ◽  
王凌云 Wang Lingyun ◽  
刘宏伟 Liu Hongwei ◽  
李洪涛 Li Hongtao ◽  
...  
2006 ◽  
Vol 65 (9) ◽  
pp. 825-834
Author(s):  
A. Ya. Kirichenko ◽  
S. P. Martynyuk ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 485
Author(s):  
Xufeng Li ◽  
Jian Lin ◽  
Zhidong Xia ◽  
Yongqiang Zhang ◽  
Hanguang Fu

Wire-arc additive manufacturing (WAAM) has been considered as one of the potential additive-manufacturing technologies to fabricate large components. However, its industrial application is still limited by the existence of stress and distortion. During the process of WAAM, the scanning pattern has an important influence on the temperature field, distortion and final quality of the part. Four kinds of deposition patterns, including sequence, symmetry, in–out and out–in, were designed to deposit H13 steel in this study. An in situ measurement system was set up to record the temperature history and the progress of accumulated distortion of the parts during deposition. An S value was proposed to evaluate the distortion of the substrate. It was shown that the distortion of the part deposited by sequence was significantly larger than those of other parts. The distortion deposited by the out–in pattern decreased by 68.6% compared with sequence. The inherent strain method and strain parameter were introduced to expose the mechanism of distortion reduction caused by pattern variation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tatiana I. Becker ◽  
Yuriy L. Raikher ◽  
Oleg V. Stolbov ◽  
Valter Böhm ◽  
Klaus Zimmermann

Abstract Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled “configuration” can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.


Sign in / Sign up

Export Citation Format

Share Document