Band Gap Properties of Two-Dimensional Square Lattice Photonic Crystal Composed of Duck-Shaped

2015 ◽  
Vol 52 (12) ◽  
pp. 121602
Author(s):  
刘娟 Liu Juan ◽  
唐吉玉 Tang Jiyu ◽  
陈彦 Chen Yan ◽  
刘洋 Liu Yang ◽  
董贵仁 Dong Guiren ◽  
...  
2013 ◽  
Vol 538 ◽  
pp. 201-204
Author(s):  
Shou Xiang Chen ◽  
Xiu Lun Yang ◽  
Xiang Feng Meng ◽  
Yu Rong Wang ◽  
Lin Hui Wang ◽  
...  

Plane-wave expansion method was employed to analyze the photonic band gap in two-dimensional silicon nitride photonic crystal. The effects of filling ratio and lattice structure type on the photonic band gap were studied. The results showed that two-dimensional dielectric cylinder type silicon nitride photonic crystal only has TE mode band gap, while, the air column type photonic crystal has complete band gap for TE and TM modes simultaneously. The distribution of band gap can be influenced by the filling ratio of dielectric materials and the lattice type. It is shown that the triangular lattice structure is much easier to form band gap than square lattice structure.


2011 ◽  
Vol 216 ◽  
pp. 285-289
Author(s):  
S.X. Du ◽  
X. D. He ◽  
B. Liu ◽  
S. J. Li ◽  
Z.M. Zhang ◽  
...  

In this paper, a new structure of two-dimensional (2D) square-lattice photonic crystal (SLPC) with button-shaped dielectric rods (BSDRs) is designed, and the properties of band gaps are analyzed by Plane Wave Expansion Method (PWM). The optimal samples that possess the width of absolute band gap are obtained by scanning the three parameters: the radius of large circular R in button mark, the ratio of the radius of small circular to the radius of large circular r/R, and the rotating angle of button mark Ө. It is shown that when r/R=0.485, R=0.406um, and Ө =750, the largest absolute band gap of 0.0406 (ωa/2πc) exists for normalized frequencies in the range 0.7501 to 0.7910 (ωa/2πc). Besides,we can get at most five absolute band gaps when r/R=0.485, R=0.406um, and Ө =600.


2008 ◽  
Vol 57 (2) ◽  
pp. 1061
Author(s):  
Zhao Ming-Ming ◽  
Lü Yan-Wu ◽  
Yu Jia-Xin ◽  
Pang Xu-Qian

2011 ◽  
Author(s):  
Xuan Guo ◽  
Lihong Han ◽  
Guifang Yuan ◽  
Zhongyuan Yu ◽  
Yumin Liu ◽  
...  

2016 ◽  
Vol 36 (3) ◽  
pp. 0323002
Author(s):  
苏康 Su Kang ◽  
王梓名 Wang Ziming ◽  
刘建军 Liu Jianjun

2004 ◽  
Vol 84 (22) ◽  
pp. 4415-4417 ◽  
Author(s):  
Guangyong Zhou ◽  
Michael James Ventura ◽  
Martin Straub ◽  
Min Gu ◽  
Atsushi Ono ◽  
...  

2020 ◽  
Vol 41 (3) ◽  
pp. 241-247
Author(s):  
Saeed Olyaee ◽  
Mahmood Seifouri ◽  
Ebrahim Azimi Sourani ◽  
Vigneswaran Dhasarathan

AbstractIn the present study, the propagation of electromagnetic waves in a square-lattice photonic crystal waveguide (PCW) is investigated using the finite-difference time-domain (FDTD) method. Then, the plane wave expansion (PWE) method is utilized to calculate the 2D photonic crystal band structure. To realize the desired waveguide, nano-line defects are introduced. The results of the numerical simulations and optimization scanning indicate that for the proposed photonic crystal structure consisting of silicon circular dielectric rods with a radius of 84 nm, a band gap can be achieved in the wavelength range of 1.34 μm<λ<1.93 μm. This wavelength range covers E, S, C, L, and U communication bands. Subsequently, by eliminating the rods in four parts of the structure, an all-optical 4-channel splitter can be designed. The numerical simulation results indicate that by coupling a light source to the main path of the structure and propagating it through each channel, the powers of the 4 output facets become approximately the same. The output power of channels 1 and 2 equals to 24.5 % of the input power, and the output power of channels 3 and 4 is 21 % of the input power and the remaining 9 % is lost in the structure as the leakage power. Since the 1.55 μm wavelength is within the band gap, that is the telecommunication band C, this device can be used as a power splitter.


Sign in / Sign up

Export Citation Format

Share Document