High Speed Real-Time Multiport Image Processing System Realized on FPGA

2013 ◽  
Vol 28 (4) ◽  
pp. 620-625 ◽  
Author(s):  
樊博 FAN Bo ◽  
王延杰 WANG Yan-jie ◽  
孙宏海 SUN Hong-hai ◽  
陈怀章 CHEN Huai-zhang ◽  
何舒文 HE Shu-wen
2013 ◽  
Vol 401-403 ◽  
pp. 1507-1513 ◽  
Author(s):  
Zhong Hu Yuan ◽  
Wen Tao Liu ◽  
Xiao Wei Han

In the weld image acquisition system, real-time image processing has been a difficult design bottleneck to break through, especially for the occasion of large data processing capability and more demanding real-time requirements, in which the traditional MCU can not adapt, so using high-performance FPGA as the core of the high speed image acquisition and processing card, better meets the large amount of data in most of the image processing system and high demanding real-time requirements. At the same time, system data collection, storage and display were implemented by using Verilog, and in order to reducing the influence of edge detection noise, the combination of image enhancement and median filtering image preprocessing algorithm was used. Compared to the pre-processing algorithm of the software implementation, it has a great speed advantage, and simplifies the subsequent processing work load, improves the speed and efficiency of the entire image processing system greatly. So it proves that the system has strong ability of restraining the noise of image, and more accurate extracted edge positioning, it can be applied in the seam tracking field which need higher real-time requirements.


1997 ◽  
Author(s):  
Chul Gyu Song ◽  
Young Mook Lee ◽  
Sang Min Lee ◽  
Won Ky Kim ◽  
Jae Ho Lee ◽  
...  

2011 ◽  
Vol 179-180 ◽  
pp. 257-263
Author(s):  
Biao Zhang ◽  
Yue Huan Wang

It is double-buses modularized structure with the combination of system control bus and high speed image data bus which is put forward in this paper. Moreover, the management and distribution of image data bus and the design of system reset procedure are elaborated through which a kind of practical real-time image processing system with the strongest adaptability and capability for structure programming and system expansion. The computing capability in infrared test of small target is greatly improved which is verified in tri DSP model system. According to complex image processing task, through the adjustment of parallel structure of image processing algorithm, the higher parallel efficiency can be realized. So to say, the system structure has a great adjustment to algorithm parallel structure and can be successfully used as a platform for universal real-time image processing.


Sign in / Sign up

Export Citation Format

Share Document