Non-Newtonian Couple Stress Fluid with MHD and Viscosity Variation in Conical Bearing

2020 ◽  
Vol 14 (6) ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 439-451
Author(s):  
A. Walicka ◽  
E. Walicki ◽  
P. Jurczak

Abstract In this paper, a multilobe conical bearing is analyzed. A lubricant modelled by a couple stress fluid flows in the bearing clearance. The Galerkin method is used to determine the mechanical parameters of multilobe journal bearings. An example of a two-lobe conical bearing is discussed in detail. The inertia of the flowing lubricant is taken into account in the analysis. It has been found that the increase of the couple stress generates an increase the pressure in the clearance.


Author(s):  
Dhananjay Yadav

In chemical process industry, food process industry, centrifugal filtration processes, and rotating machinery, convective flows are characterized by rotation, where couple-stress fluid (a type of non-Newtonian fluid) with variable viscosity in a porous medium can act as a working fluid. In the present work, the combined effect of the temperature-dependent viscosity, the Darcy number and the uniform rotation on the arrival of convective motion in a couple-stress fluid saturated porous layer is examined applying linear stability concept. The outcome of the viscosity variation parameter Q, the rotation parameter [Formula: see text], the couple-stress parameter [Formula: see text], and the Darcy number [Formula: see text] on both stationary and oscillatory convections is investigated analytically and presented graphically in terms of the critical thermal Darcy–Rayleigh number [Formula: see text]. Below the critical value [Formula: see text], no convective motion arises in the considered system. It is recognized that the arrival of convective motion is oscillatory only if the rotation parameter [Formula: see text] surpasses a threshold value which in turn depends on other physical parameters. The impact of the viscosity variation parameter Q has a destabilizing influence, while the couple-stress parameter [Formula: see text], rotation parameter [Formula: see text], the Darcy number [Formula: see text], the Prandtl number ⪻, and the heat capacity ratio γ show stabilizing influences on the stability of arrangement.


2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

Sign in / Sign up

Export Citation Format

Share Document