scholarly journals Flash Photolysis of Caged Compounds in the Cilia of Olfactory Sensory Neurons

Author(s):  
Anna Boccaccio ◽  
Claudia Sagheddu ◽  
Anna Menini
2007 ◽  
Vol 98 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Anna Boccaccio ◽  
Anna Menini

A Ca2+-activated Cl− current constitutes a large part of the transduction current in olfactory sensory neurons. The binding of odorants to olfactory receptors in the cilia produces an increase in cAMP concentration; Ca2+ enters into the cilia through CNG channels and activates a Cl− current. In intact mouse olfactory sensory neurons little is known about the kinetics of the Ca2+-activated Cl− current. Here, we directly activated CNG channels by flash photolysis of caged cAMP or 8-Br-cAMP and measured the current response with the whole cell voltage-clamp technique in mouse neurons. We measured multiphasic currents in the rising phase of the response at −50 mV. The current rising phase became monophasic in the absence of extracellular Ca2+, at +50 mV, or when most of the intracellular Cl− was replaced by gluconate to shift the equilibrium potential for Cl− to −50 mV. These results show that the second phase of the current in mouse intact neurons is attributed to a Cl− current activated by Ca2+, similarly to previous results on isolated frog cilia. The percentage of the total saturating current carried by Cl− was estimated in two ways: 1) by measuring the maximum secondary current and 2) by blocking the Cl− channel with niflumic acid. We estimated that in the presence of 1 mM extracellular Ca2+ and in symmetrical Cl− concentrations the Cl− component can constitute up to 90% of the total current response. These data show how to unravel the CNG and Ca2+-activated Cl− component of the current rising phase.


2006 ◽  
Vol 128 (2) ◽  
pp. 171-184 ◽  
Author(s):  
Anna Boccaccio ◽  
Laura Lagostena ◽  
Volker Hagen ◽  
Anna Menini

Vertebrate olfactory sensory neurons rapidly adapt to repetitive odorant stimuli. Previous studies have shown that the principal molecular mechanisms for odorant adaptation take place after the odorant-induced production of cAMP, and that one important mechanism is the negative feedback modulation by Ca2+-calmodulin (Ca2+-CaM) of the cyclic nucleotide-gated (CNG) channel. However, the physiological role of the Ca2+-dependent activity of phosphodiesterase (PDE) in adaptation has not been investigated yet. We used the whole-cell voltage-clamp technique to record currents in mouse olfactory sensory neurons elicited by photorelease of 8-Br-cAMP, an analogue of cAMP commonly used as a hydrolysis-resistant compound and known to be a potent agonist of the olfactory CNG channel. We measured currents in response to repetitive photoreleases of cAMP or of 8-Br-cAMP and we observed similar adaptation in response to the second stimulus. Control experiments were conducted in the presence of the PDE inhibitor IBMX, confirming that an increase in PDE activity was not involved in the response decrease. Since the total current activated by 8-Br-cAMP, as well as that physiologically induced by odorants, is composed not only of current carried by Na+ and Ca2+ through CNG channels, but also by a Ca2+-activated Cl− current, we performed control experiments in which the reversal potential of Cl− was set, by ion substitution, at the same value of the holding potential, −50 mV. Adaptation was measured also in these conditions of diminished Ca2+-activated Cl− current. Furthermore, by producing repetitive increases of ciliary's Ca2+ with flash photolysis of caged Ca2+, we showed that Ca2+-activated Cl− channels do not adapt and that there is no Cl− depletion in the cilia. All together, these results indicate that the activity of ciliary PDE is not required for fast adaptation to repetitive stimuli in mouse olfactory sensory neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kota Ezaki ◽  
Takashi Yamashita ◽  
Thomas Carle ◽  
Hidehiro Watanabe ◽  
Fumio Yokohari ◽  
...  

AbstractAlthough praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3–C7); and class M responded to middle-length chain aldehydes (C6–C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.


Sign in / Sign up

Export Citation Format

Share Document