scholarly journals Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins

Author(s):  
Pingan Yuanxiang ◽  
Sujoy Bera ◽  
Anna Karpova ◽  
Michael R. Kreutz ◽  
Marina Mikhaylova
2012 ◽  
Vol 107 (4) ◽  
pp. 1058-1066 ◽  
Author(s):  
Peng Zhang ◽  
John E. Lisman

CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.


2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Raffaella Molteni ◽  
Andrea C. Rossetti ◽  
Elisa Savino ◽  
Giorgio Racagni ◽  
Francesca Calabrese

Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). Theex vivomethodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryan J Vaden ◽  
Jose Carlos Gonzalez ◽  
Ming-Chi Tsai ◽  
Anastasia J Niver ◽  
Allison R Fusilier ◽  
...  

Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs. Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling. We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs. Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.


2013 ◽  
Vol 6 (273) ◽  
pp. ec94-ec94 ◽  
Author(s):  
Nancy R. Gough

The cellular model of memory is a synaptic plasticity event called long-term potentiation (LTP). LTP can be divided into two phases: The early phase (E-LTP) lasts less than 2 hours and does not require new protein synthesis, and the late phase (L-LTP) can last many hours and requires new protein synthesis. Translation of mRNAs is regulated through various mechanisms, one of which is the binding of poly(A)-binding protein (PABP) to the poly(A) tail of the target mRNA. PAIP2A and PAIP2B (PAIP-interacting protein 2A and 2B) inhibit translation by interfering with PABP function. Khoutorsky et al. found that degradation of PAIP2A, which is the form that is abundant in the brain, linked synaptic activity to enhanced translation and contributed to learning and memory in mice. Hippocampal slices from Paip2a–/– mice showed L-LTP in response to a stimulus that only triggered E-LTP in slices from wild-type mice and showed impaired L-LTP in response to a stimulus that triggered L-LTP in slices from wild-type mice. Consistent with these electrophysiological studies, behavorial memory tests indicated that Paip2a–/– mice showed faster learning in spatial long-term memory tests in response to weak training but showed impaired learning in response to a long-term contextual fear conditioning test that used a strong training paradigm. Experiments with cultured neurons and hippocampal slices showed an activity-dependent decrease in the abundance of PAIP2A that could be prevented by pharmacological inhibition of the calcium-dependent proteases calpains. The calpain-dependent reduction in PAIP2A was also detected in mice subjected to the contextual fear conditioning paradigm, and infusion of calpain inhibitors impaired long-term contextual fear memory. Increased production of calcium-calmodulin kinase IIα (CaMKIIα) occurs in response to synaptic activity and is necessary for learning. The abundance of CaMKIIα in the hippocampus was increased in Paip2a–/– mice trained in a contextual fear conditioning paradigm compared with untrained mice or wild-type trained mice. This increase in CaMKIIα resulted from increased translation because CaMKIIα mRNA was shifted to heavy polysome fractions in the brains of Paip2a–/– trained mice and the association of PABP with this mRNA was greatest in the Paip2a–/– trained mice. Thus, activity-dependent degradation of a translation inhibitor contributes to the enhanced translation needed for learning and memory.A. Khoutorsky, A, Yanagiya, C. G. Gkogkas, M. R. Fabian, M. Prager-Khoutorsky, R. Cao, K. Gamache, F. Bouthiette, A. Parsyan, R. E. Sorge, J. S. Mogil, K. Nader, J.-C. Lacaille, N. Sonenberg, Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron78, 298–311 (2013). [Online Journal]


Sign in / Sign up

Export Citation Format

Share Document