scholarly journals On the Trotter-Lie product formula

1974 ◽  
Vol 50 (9) ◽  
pp. 694-698 ◽  
Author(s):  
Tosio Kato
2018 ◽  
Vol 17 (03) ◽  
pp. 1850049
Author(s):  
M. Aaghabali ◽  
M. Ariannejad ◽  
A. Madadi

A Lie ideal of a division ring [Formula: see text] is an additive subgroup [Formula: see text] of [Formula: see text] such that the Lie product [Formula: see text] of any two elements [Formula: see text] is in [Formula: see text] or [Formula: see text]. The main concern of this paper is to present some properties of Lie ideals of [Formula: see text] which may be interpreted as being dual to known properties of normal subgroups of [Formula: see text]. In particular, we prove that if [Formula: see text] is a finite-dimensional division algebra with center [Formula: see text] and [Formula: see text], then any finitely generated [Formula: see text]-module Lie ideal of [Formula: see text] is central. We also show that the additive commutator subgroup [Formula: see text] of [Formula: see text] is not a finitely generated [Formula: see text]-module. Some other results about maximal additive subgroups of [Formula: see text] and [Formula: see text] are also presented.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Jiyuan Tao

AbstractIn this paper,we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


Author(s):  
Mohamed Amine Boubatra ◽  
Selma Negzaoui ◽  
Mohamed Sifi

2017 ◽  
Vol 28 (10) ◽  
pp. 1750067 ◽  
Author(s):  
M. Alaghmandan ◽  
I. G. Todorov ◽  
L. Turowska

We initiate the study of the completely bounded multipliers of the Haagerup tensor product [Formula: see text] of two copies of the Fourier algebra [Formula: see text] of a locally compact group [Formula: see text]. If [Formula: see text] is a closed subset of [Formula: see text] we let [Formula: see text] and show that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] then [Formula: see text] is a set of local spectral synthesis for [Formula: see text]. Conversely, we prove that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] and [Formula: see text] is a Moore group then [Formula: see text] is a set of spectral synthesis for [Formula: see text]. Using the natural identification of the space of all completely bounded weak* continuous [Formula: see text]-bimodule maps with the dual of [Formula: see text], we show that, in the case [Formula: see text] is weakly amenable, such a map leaves the multiplication algebra of [Formula: see text] invariant if and only if its support is contained in the antidiagonal of [Formula: see text].


1990 ◽  
Vol 131 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Hagen Neidhardt ◽  
Valentin A. Zagrebnov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document