Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools

2013 ◽  
Vol 37 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Dong Hyeon Kim ◽  
Choon Man Lee ◽  
Hyun Jin Choi
2011 ◽  
Vol 308-310 ◽  
pp. 1258-1263 ◽  
Author(s):  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Zhi Yun Mao ◽  
Jiang Miao Yi ◽  
Huan Lin

The main structure of DVG850 high-speed vertical machining center is instructed in the paper, the solid 3D model of the machine is established by SolidWorks, and then improted into ANSYS Workbench to do static and dynamic analysis. Firstly, the static analysis of high-speed vertical machining center is studied to get the deformation figures. From the analysis of the deformation figures, we can find the locations of weak static stiffness. Next, the modal analysis is studied and the order of natural frequencies we need are obtained. Through the analysis of the vibration modes of this machine tools, its relative weaker parts are pointed. Finally, The structure of the machine tools is improved according to the analysis results. The static and dynamic characteristics of the improved structure are apparently better than that of the original design. It makes a base for optimized design and remanufacturing. .


2018 ◽  
Vol 180 ◽  
pp. 01005 ◽  
Author(s):  
Andrzej Wilk

Transmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should take into account: mass distribution of particular parts, physical properties of used materials, kinematic joints character at mechanical nodes, nonlinear parameters of kinematic joints, defining different parametric waveforms of forces and torques, and numerical dynamic simulation coupled with FEM calculations. In this work methods for the formulation of the governing equations of motion are presented. Some of these methods are more suitable for automated computer implementation. The novel computer methods recommended for static and dynamic analysis of pantographs are presented. Possibilities of dynamic analysis using CAD and CAE computer software are described. Original results are also presented. Conclusions related to dynamic properties of pantographs are included. Chapter 2 presents the methods used for formulation of the equation of pantograph motion. Chapter 3 is devoted to modelling of forces in multibody systems. In chapter 4 the selected computer tools for dynamic analysis are described. Chapter 5 shows the possibility of FEM analysis coupled with dynamic simulation. In chapter 6 the summary of this work is presented.


2011 ◽  
Vol 230-232 ◽  
pp. 916-919
Author(s):  
Chang Xian Cheng

By analyzing various kinds of gripper systems of different sheet-fed offset presses, the under-table swing-arm system, with a fixed axis, has the advantages of meeting high-speed press running requirement, keeping longer dwell time of printing sheets, helping improve print registration, and hence in favor of assuring HIFI print quality while having high press output. The dynamic optimization design of the under-table swing-arm system is vital to the higher performance of the system on the state of the art press machines. Through dynamic analysis of the gripper system, the way of dynamic optimization design and its correspondent formulas are derived in this paper.


1955 ◽  
Vol 34 (4) ◽  
pp. 224
Author(s):  
F.C. Cooke ◽  
S. Radcliffe ◽  
H.A. Chambers ◽  
C. Bromage ◽  
Menelaus ◽  
...  

2021 ◽  
pp. 1-23
Author(s):  
Zhiwei Wang ◽  
Zhonghui Yin ◽  
Paul Allen ◽  
Ruichen Wang ◽  
Qing Xiong ◽  
...  

Author(s):  
Senrong Wang ◽  
Jun Luo ◽  
Shengyang Zhu ◽  
Zhaoling Han ◽  
Guotang Zhao

Sign in / Sign up

Export Citation Format

Share Document