Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination

2016 ◽  
Vol 40 (6) ◽  
pp. 539-546
Author(s):  
Hune-Tae Kim ◽  
Ho-Wan Ryu ◽  
Yun-Jae Kim ◽  
Jong-Sung Kim ◽  
Myung-Rak Choi ◽  
...  
1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
C. Soutis ◽  
R. Tenchev

This paper describes a progressive damage failure model which is making an attempt to predict damage growth and ultimate compressive strength of notched laminates subjected to uniaxial compression. A non-linear finite element programme is developed to perform the ply-by-ply stress analysis and numerical results are compared with existing experimental data [1,2]; the agreement is acceptable.


2019 ◽  
Vol 133 ◽  
pp. 154-164 ◽  
Author(s):  
Konrad Perzynski ◽  
Jiangting Wang ◽  
Krzysztof Radwanski ◽  
Krzysztof Muszka ◽  
Lukasz Madej

Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100883
Author(s):  
Cemre Yavuz ◽  
Eva Maria Wölfel ◽  
Katharina Jähn-Rickert ◽  
Herbert Mushumba ◽  
Birgit Wulff ◽  
...  

Author(s):  
Saibal Kanchan Barik ◽  
Ganesh R Narayanan ◽  
Niranjan Sahoo

Abstract The present study deals with both numerical and experimental evaluation of failure strain and fracture pattern during shock tube impact forming of 1.5 mm thick AA 5052-H32 sheet. A hemispherical end nylon striker is propelled to deform the sheet at different velocities. Here the main objective is to understand the effect of flow stress models and fracture models on the forming outputs. The experimental situation is modelled in two stages, i.e., incorporating the pressure in the first stage, and displacement of the striker in the second stage in finite element simulation using the finite element (FE) code (DEFORM-3D). A new strategy followed to evaluate the rate-dependent flow stress data from the tensile test of samples sectioned from shock tube-based deformed sheet is acceptable, and finite element simulations incorporating those properties predicted accurate failure strain and fracture pattern. Out of all the flow stress models, the modified Johnson-Cook model has a better flow stress predictability due to the inclusion of the non-linear strain rate sensitivity term in the model. During the prediction of the failure strain and necking location, Cockcroft-Latham failure model, Brozzo failure model, and Freudenthal failure model have a fair agreement with experimental data in combination with the two flow stress models, i.e., Johnson-Cook model and modified Johnson-Cook model.


2019 ◽  
Vol 211 ◽  
pp. 47-60 ◽  
Author(s):  
Tianyao Liu ◽  
Xudong Qian ◽  
Wei Wang ◽  
Yiyi Chen

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jagoba Lekue ◽  
Florian Dörner ◽  
Christian Schindler

This paper presents research activities regarding the systematic error of the pressure measurement film when measuring the area of the wheel–rail contact. In particular, an explanation for the different error values shown by the different film types was sought. A finite element model was created based on the assumption that not only the film, but also the microcapsules on top of it alter the results. The performance of the existing film models was enhanced by defining microcapsules with element failure and deletion behaviors. The new model was capable of reproducing the trend shown by the systematic error in the experiments. The simulation results confirmed that the measurement error of a certain film type is not only caused by the film itself, but also depends on the failure pressure and especially the diameter of the capsules.


Author(s):  
Vinícius Felipe Wandscher ◽  
César Dalmolin Bergoli ◽  
Ariele Freitas de Oliveira ◽  
Osvaldo Bazzan Kaizer ◽  
Alexandre Luiz Souto Borges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document