Shape Optimization Design of an Automotive Drive Shaft for Improving Fatigue Life

Author(s):  
Tae An Kim ◽  
Hyung Joon Park ◽  
Seung Ho Han
2011 ◽  
Vol 47 (10) ◽  
pp. 1186-1190 ◽  
Author(s):  
Feng Li ◽  
Guangwei Meng ◽  
Lirong Sha ◽  
Liming Zhou

Author(s):  
Jie Zhang ◽  
Qidong Wang ◽  
Han Zhang ◽  
Min Zhang ◽  
Jianwei Lin

Abstract In this study, a systematic optimization method for the thermal management problem of passenger vehicle was proposed. This article addressed the problem of the drive shaft sheath surface temperature exceeded allowable value. Initially, the causes and initial measures of the thermal problem were studied through computational fluid dynamics (CFD) simulation. Furthermore, the key measures and the relevant parameters were determined through Taguchi method and significance analysis. A prediction model between the parameters and optimization objective was built by radial basis function neural network (RBFNN). Finally, the prediction model and particle swarm optimization (PSO) algorithm were combined to calculate the optimal solution, and the optimal solution was selected for simulation and experiment verification. Experiment results indicated that this method reduced the drive shaft sheath surface temperature promptly, the decreasing amplitude was 22%, which was met the experimental requirements.


2018 ◽  
Vol 91 (1) ◽  
pp. 124-133
Author(s):  
Zhe Yuan ◽  
Shihui Huo ◽  
Jianting Ren

Purpose Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new jig-shape optimization method is presented in the current study and its application on the high aspect ratio wing is discussed. Design/methodology/approach First, the effects of bending and torsion on aerodynamic distribution were discussed. The effect of bending deformation was equivalent to the change of attack angle through a new equivalent method. The equivalent attack angle showed a linear dependence on the quadratic function of bending. Then, a new jig-shape optimization method taking integrated structural deformation into account was proposed. The method was realized by four substeps: object decomposition, optimization design, inversion and evaluation. Findings After the new jig-shape optimization design, both aerodynamic distribution and structural configuration have satisfactory results. Meanwhile, the method takes both bending and torsion deformation into account. Practical implications The new jig-shape optimization method can be well used for the high aspect ratio wing. Originality/value The new method is an innovation based on the traditional single parameter design method. It is suitable for engineering application.


2002 ◽  
Vol 45 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Seog-Young HAN ◽  
Jang-Keun LIM

Author(s):  
Ashish Bawkar

This work aims towards the design and optimization of the drive shaft as there is increasing demand for weight reduction in an automobile vehicle. The drive shaft is basically a torque transmitting element which transmit the torque from the differential gearbox to the respective wheels. In general, the drive shafts are subjected to fluctuating loads as the torque requirement changes according to the road conditions. Due to this, the drive shaft should be designed considering fatigue failure. The Maruti Suzuki Ertiga model is chosen for design and optimization of the drive shaft. For the fatigue life predicting of the drive shaft, the S-N curve approach is used. Furthermore, the inner diameter of the shaft is varied to obtain the optimized diameter of a hollow shaft which can withstand these fluctuating loads without failure. Along with fatigue life prediction, the natural frequency of the hollow shaft is also calculated. Furthermore, the parametric analysis is carried out of fatigue FOS, Von mises stress, weight and natural frequency of the shaft by varying the diameter ratio of the hollow shaft, and the nature of variation of these parameters are plotted in their respective graphs. The design is validated by performing FEA analysis for each case of a hollow shaft using Ansys software. Finally, from the FEA analysis we conclude that the optimized dimensions of the hollow drive shaft are safe.


2008 ◽  
Vol 32 (12) ◽  
pp. 1132-1139 ◽  
Author(s):  
Jun-Ho Won ◽  
Joo-Ho Choi ◽  
Jin-Hyuk Gang ◽  
Da-Wn An ◽  
Gi-Jun Yoon

Sign in / Sign up

Export Citation Format

Share Document