scholarly journals Chemical bath synthesis of metal chalcogenide films. Part 39. Chemical bath deposition of ZnS films by thioacetamide

2019 ◽  
Vol 57 (1) ◽  
pp. 115-126
Author(s):  
Larisa N. Maskaeva ◽  
◽  
Anastasia D. Kutyavina ◽  
Anna I. Zhdanova ◽  
Roman A. Gagarin ◽  
...  

ZnS thin films are promising as a buffer layer in solar cells, which can be basis of photovoltaic cells, photoelectric sensors, and light-emitting diodes. For the preparation of thin ZnS films by chemical bath deposition, thioacetamide or thiourea is used as a chalcogenization agent, and ammonia, triethanolamine and sodium citrate are mainly used as ligands, carrying out the process in an alkaline medium. In the present work, in order to predict the conditions of hydrochemical deposition of ZnS films, we have analyzed ionic equilibria in two reaction systems “ZnCl2 – NH4OH – CH3CNH2” and “ZnCl2 – CH3CSNH2 – KHC8H4O4” that differ in acidity of the medium. An analysis of ionic equilibrium showed that in the first bath ~80% of the metal is in the form of a neutral hydroxo complex Zn(OH)2 at pH > 7, and in the second more than 98% of zinc is present as acetate complexes Zn(CH3COO)+ and Zn(CH3COO)2 in the range of pH from 0 to 7. The thermodynamic evaluation of the boundary conditions for the formation of zinc sulfide made it possible to conclude that a zinc sulfide film can be formed in both systems without the admixture of Zn(OH)2 hydroxide. ZnS films were obtained by hydrochemical deposition with thick about 100 nm from both systems. Using local energy-dispersive elemental analysis, it was found that the average ratio between the main elements of Zn and S in the layers obtained in an alkaline medium is 49.48 and 50.52 at.%, and in the synthesized from acidic solutions – 50.35 and 49.65 at.%. According to the data of electron microscopy, up to 85% of the agglomerates have an average size of 200-450 nm that formed from ZnS particles growing in an alkaline reaction bath. At the same time, there are aggregates whose dimensions reach 700 nm. The layers that deposited from relatively acidic solutions are distinguished by a higher degree of dispersion. Here up to ~90% of the film-forming particles is in the nanoscale range from 50 to 90 nm.

2002 ◽  
Vol 12 (10) ◽  
pp. 2940-2944 ◽  
Author(s):  
Alexander Bayer ◽  
David S. Boyle ◽  
Paul O'Brien

Optik ◽  
2017 ◽  
Vol 145 ◽  
pp. 589-598 ◽  
Author(s):  
E. Flores-García ◽  
P. González-García ◽  
J. González-Hernández ◽  
R. Ramírez-Bon

2011 ◽  
Vol 264-265 ◽  
pp. 856-861 ◽  
Author(s):  
Saafie Salleh ◽  
Harvey N. Rutt ◽  
M.N. Dalimin ◽  
Muhamad Mat Salleh

Zinc sulfide (ZnS) thin films as the waveguide medium have been deposited onto oxidized silicon wafer substrates at cold temperature (Tcold = –50oC) and ambient temperature (Tambient = 25oC) by thermal evaporation technique. The surface morphology of ZnS films were pictured with an atomic force microscopy (AFM) and the surface roughness were calculated from the AFM images. The propagation losses of the samples were measured using a scanning detection technique attached to a prism coupler. The AFM results revealed that the surface of cold deposited ZnS film is rougher than the surface of ambient deposited ZnS film. The propagation losses of the cold deposited ZnS waveguide are consistently lower than the ambient deposited ZnS waveguide at all measured wavelengths.


2008 ◽  
Vol 51 ◽  
pp. 125-130 ◽  
Author(s):  
Rong Fuh Louh ◽  
Warren Wu

Chemical bath deposition (CBD) is a fairly simple synthetic route to prepare II-VI semicondutive zinc sulfide thin films, which can be prepared on the flat surface of glass or silicon wafer substrates in the solution containing the precursors of zinc and sulfur ions in terms of ambient conditions of varying acidity. This study particularly aims at the growth dependence and optical property of ZnS thin films in the CBD process by different experiment parameters, whereas we intend to choose suitable types of zinc ionic precursors to be coupled with various CBD parameters such as reaction temperature and time, precursor concentration, types and complexing agents as well as post-deposition heat treatment conditions. Addition of different concentration of ethylenediamine, ammonium sulfate, sodium citrate and hydrazine in the CBD reaction process was used to control the adequate growth rate of ZnS thin films. As a consequence, the rapid thermal annealing was employed to enhance the film uniformity and thickness evenness, transmittance and the energy gap of ZnS samples. The results would lead to a potential application of buffer layer for the Cu (In,Ga)Se2 based thin film solar cells. The analytic instrument including SEM, AFM, UV-VIS were used to examine the CBD-derived nanosized ZnS buffer layers for the thin film solar cells. The ZnS thin films prepared by the chemical bath deposition in this study results in film thickness of 80 ~ 100 nm, high transmittance of 80~85% and the energy gap of 3.89 ~ 3.98 eV.


2018 ◽  
Vol 81 ◽  
pp. 68-74 ◽  
Author(s):  
E.G. Alvarez-Coronado ◽  
L.A. González ◽  
J.C. Rendón-Ángeles ◽  
M.A. Meléndez-Lira ◽  
R. Ramírez-Bon

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fei-Peng Yu ◽  
Sin-Liang Ou ◽  
Pin-Chuan Yao ◽  
Bing-Rui Wu ◽  
Dong-Sing Wuu

In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH)2also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.


2008 ◽  
Vol 15 (06) ◽  
pp. 821-827 ◽  
Author(s):  
Z. Q. BIAN ◽  
X. B. XU ◽  
J. B. CHU ◽  
Z. SUN ◽  
Y. W. CHEN ◽  
...  

An improved chemical bath deposition (CBD) technique has been provided to prepare zinc sulfide ( ZnS ) thin films on glass substrates deposited at 80–82°C using a mixed aqueous solution of zinc sulfate, ammonium sulfate, thiourea, hydrazine hydrate, and ammonia at the alkaline conditions. Both the traditional magnetic agitation and the substrates vibration by hand frequently were done simultaneously during the deposition. The substrates vibration reduced the formation and residence of gas bubbles on the glass substrates during growth and resulted in growth of clean ZnS thin films with high quality. Ammonia and hydrazine hydrate were used as complexing agents. It is found that hydrazine hydrate played an important role in growth of ZnS films. The structure and microstructure of ZnS films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-vis spectroscopic methods. The XRD showed a hexagonal structure. The formed ZnS films exhibited good optical properties with high transmittance in the visible region and the band gap value was estimated to be 3.5–3.70 eV.


2014 ◽  
Vol 548-549 ◽  
pp. 201-205
Author(s):  
Fedil G. Sanico ◽  
Rolando T. Candidato ◽  
Reynaldo M. Vequizo ◽  
Arnold C. Alguno

Silica-modified polyaniline (SM-PAni) were deposited on glass and platinum-coated glass substrates via oxidative polymerization. Zinc sulfide (ZnS) were grown on top of SM-PAni films by chemical bath deposition. The surface and optical characteristics were investigated. SEM micrographs revealed the formation of SM-PAni nanostructures and ZnS nanospheres. Increase in nanosphere sizes were observed when Pt-coated substrates were used. UV-Vis spectra showed that SM-PAni/ZnS nanocomposites grown on both substrates exhibit good absorbance in the visible and ultraviolet region which is a good indication for potential solar cell application. Better absorbance in the ultraviolet region was observed when Pt-coated substrates was used. Vibrational peaks observed in FTIR confirmed the presence of SM-PAni particles.


2021 ◽  
Vol 57 (5) ◽  
pp. 20-26
Author(s):  
I.V. Demidenko ◽  
◽  
V.M. Ishimov ◽  

The paper considers the features of electrochemical growth of zinc sulfide from an aqueous electrolyte based on sodium sulfite and zinc sulfate. The conditions for the electrochemical production of ZnS films are determined. It is shown that the value of the potential at which a ZnS layer is formed is limited by the achievement of the critical current due to the diffusion limitations of the electrochemical process of reducing the sulfite ion. It is shown that the resulting films contain an excess of sulfur, which is removed, and the stoichiometric composition is obtained by heat treatment. Aed mechanism of reactions resulting in the formation of zinc sulfide is proposed.


Sign in / Sign up

Export Citation Format

Share Document