scholarly journals Host plant resistance in pigeonpea (Cajanus cajan (L.) Millsp.) genotypes for root rot disease caused by (Rhizoctonia bataticola (Taub.)Butler]

2020 ◽  
Vol 11 (04) ◽  
Author(s):  
H. Manjunatha ◽  
M. Saifulla

Background: For the management of soil borne disease like dry root rot of chickpea caused by Macrophomina phaseolina, by using fungicides alone is not feasible due to environmental and health hazards. Hence integrated management of the disease by using resistant varieties, fungicides and bio-control agents is the best alternative. So the present study was aimed to identify resistant varieties, best fungicide and bioagent for management of dry root rot in chickpea. Methods: Two hundred and twelve genotypes were screened using blotter paper technique for identifying resistant genotypes for dry root rot. The experiment on management of dry root rot was conducted during Kharif and Rabi of 2013-14 using a susceptible chickpea variety JG-11 with 14 treatments including control with 3 replications. Result: Of two hundred and twelve chickpea genotypes screened for host plant resistance against Macrophomina phaseolina by blotter paper technique only one genotype ie. PBG-5 showed moderately resistant reaction. Among fourteen treatments including fungicides and bioagents imposed for the management of dry root rot, seed treatment with tebuconazole @ 2 g/kg recorded lowest per cent disease incidence of 9.43, with a highest yield of 722.81 kg/ha compared to untreated control which recorded the highest per cent disease incidence (40.10) with a lowest mean yield of 362.02 kg/ha.


2010 ◽  
Vol 118 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Tesfaye T. Tesso ◽  
Newton Ochanda ◽  
Christopher R. Little ◽  
Larry Claflin ◽  
Mitchell R. Tuinstra

2016 ◽  
Vol 10 (4) ◽  
pp. 2735-2745
Author(s):  
Prameela Devi ◽  
Deeba Kamil ◽  
Ravi Mehndiratta ◽  
N Prabhakaran ◽  
Sudeep Toppo

2021 ◽  
Vol 18 (2) ◽  
pp. 403-411
Author(s):  
Keshavamurthy Mukunda ◽  
Vishwanatha Teligi ◽  
Shilpashree Heggadihalli Puttegowda ◽  
Kavyasree Doddaballapur Sampangiramaiah

The present investigation was carried out in view of destructive nature of root rot disease of mulberry caused by Rhizoctonia bataticola. The pathogen is a soil inhabiting fungus which is causing serious threat to more than 500 plant species. This study will enable to have a clear view of the root rot pathogen, R. bataticola in respect to variability, distribution and economic impact on mulberry plant. Root rot disease of mulberry is a devastating disease among the mulberry diseases. The part of study was conducted in Ramanagara district of Karnataka which is the largest market for silk cocoons in Asia, followed by Kanakapura in Karnataka, India. A field survey was conducted on disease incidence in various mulberry cultivating fields in Kanakapura and Ramanagara areas of Karnataka. Disease incidence of 78% and 53.60% with an average leaf yield loss of 39.73% covering 80 mulberry gardens has been reported in Kanakapura and Ramanagara respectively. From the infected root samples the phytopathogen, R. bataticola was isolated and its phenotypic variation was studied by growing the fungal pathogen on different fugal isolation media such as potato dextrose agar, richard’s agar and czapek dox agar under laboratory conditions. This study revealed the prevalence of the mulberry root rot disease in major mulberry growing locations in Karnataka. Incidence and severity of the mulberry root rot disease varied significantly among the locations under cropping seasons. This study was limited to southern Karnataka and did not cover other mulberry production locations in the different agro-ecological zones in Karnataka state. Therefore a study should be undertaken to evaluate the disease prevalence in other locations.


2020 ◽  
Vol 15 (2) ◽  
pp. 96-100
Author(s):  
S. Malathi

Actinomycetes were tested for their antagonistic activity against Fusarium udum and Macrophomina phaseolina under in vitro condition. Among the tested isolates of Actinomycetes AC (5) reported highest 82.85 per cent reduction of mycelial growth of Fusarium udum and 85.13 per cent reduction of mycelial growth of Macrophomina phaseolina. In the field experiment, five treatments were tested for the management of wilt and dry root rot disease, T3- ST+ SA with Actinomycetes (AC 5) significantly recorded 71.92 and 70.38 per cent reduction of the wilt and dry root rot diseases, respectively. These biocontrol agents were used an alternative to the chemical fungicide for controlling the wilt and dry root rot incidence and enhanced the plant growth parameters and there by increased yield in redgram.


Sign in / Sign up

Export Citation Format

Share Document