scholarly journals Heat Flux Pipe In Large-scale Fire Tests

2005 ◽  
Vol 8 ◽  
pp. 1413-1424 ◽  
Author(s):  
Peter Wu
Keyword(s):  
2011 ◽  
Vol 31 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Hideki Yoshioka ◽  
Yoshifumi Ohmiya ◽  
Masaki Noaki ◽  
Masashi Yoshida
Keyword(s):  

2014 ◽  
Vol 763 ◽  
pp. 109-135 ◽  
Author(s):  
Sebastian Wagner ◽  
Olga Shishkina

AbstractDirect numerical simulations (DNS) of turbulent thermal convection in a box-shaped domain with regular surface roughness at the heated bottom and cooled top surfaces are conducted for Prandtl number $\mathit{Pr}=0.786$ and Rayleigh numbers $\mathit{Ra}$ between $10^{6}$ and $10^{8}$. The surface roughness is introduced by four parallelepiped equidistantly distributed obstacles attached to the bottom plate, and four obstacles located symmetrically at the top plate. By varying $\mathit{Ra}$ and the height and width of the obstacles, we investigate the influence of the regular wall roughness on the turbulent heat transport, measured by the Nusselt number $\mathit{Nu}$. For fixed $\mathit{Ra}$, the change in the value of $\mathit{Nu}$ is determined not only by the covering area of the surface, i.e. the obstacle height, but also by the distance between the obstacles. The heat flux enhancement is found to be largest for wide cavities between the obstacles which can be ‘washed out’ by the flow. This is also manifested in an empirical relation, which is based on the DNS data. We further discuss theoretical limiting cases for very wide and very narrow obstacles and combine them into a simple model for the heat flux enhancement due to the wall roughness, without introducing any free parameters. This model predicts well the general trends and the order of magnitude of the heat flux enhancement obtained in the DNS. In the $\mathit{Nu}$ versus $\mathit{Ra}$ scaling, the obstacles work in two ways: for smaller $\mathit{Ra}$ an increase of the scaling exponent compared to the smooth case is found, which is connected to the heat flux entering the cavities from below. For larger $\mathit{Ra}$ the scaling exponent saturates to the one for smooth plates, which can be understood as a full washing-out of the cavities. The latter is also investigated by considering the strength of the mean secondary flow in the cavities and its relation to the wind (i.e. the large-scale circulation), that develops in the core part of the domain. Generally, an increase in the roughness height leads to stronger flows both in the cavities and in the bulk region, while an increase in the width of the obstacles strengthens only the large-scale circulation of the fluid and weakens the secondary flows. An increase of the Rayleigh number always leads to stronger flows, both in the cavities and in the bulk.


Author(s):  
Richard J. Anthony ◽  
John P. Clark ◽  
Stephen W. Kennedy ◽  
John M. Finnegan ◽  
Dean Johnson ◽  
...  

This paper describes a large scale heat flux instrumentation effort for the AFRL HIT Research Turbine. The work provides a unique amount of high frequency instrumentation to acquire fast response unsteady heat flux in a fully rotational, cooled turbine rig along with unsteady pressure data to investigate thermal loading and unsteady aerodynamic airfoil interactions. Over 1200 dynamic sensors are installed on the 1 & 1/2 stage turbine rig. Airfoils include 658 double-sided thin film gauges for heat flux, 289 fast-response Kulite pressure sensors for unsteady aerodynamic measurements, and over 40 thermocouples. An overview of the instrumentation is given with in-depth focus on the non-commercial thin film heat transfer sensors designed and produced in the Heat Flux Instrumentation Laboratory at WPAFB. The paper further describes the necessary upgrade of data acquisition systems and signal conditioning electronics to handle the increased channel requirements of the HIT Research Turbine. More modern, reliable, and efficient data processing and analysis code provides better handling of large data sets and allows easy integration with the turbine design and analysis system under development at AFRL. Example data from cooled transient blowdown tests in the TRF are included along with measurement uncertainty.


As emphasized recently by Munk & Wunsch, the traditional methods of monitoring the ocean circulation give data too hopelessly aliased in space and time to permit a proper assessment of basin-wide dynamics and heat flux on climatic timescales. The prospect of nearly continuous recording of ocean-surface topography by satellite altimetry with suitable supporting measurements might make such assessments possible. The associated identification of the geocentric oceanic tidal signal in the data would be an additional bonus. The few weeks of altimetry recorded by Seasat gave a glimpse of the possibilities, but also clarified the areas where better precision and knowledge are needed. Further experience will be gained from currently projected multi-purpose satellites carrying altimeters, but serious knowledge of ocean circulation will result only from missions that are entirely dedicated to the precise measurement of ocean topography.


2018 ◽  
Vol 36 (4) ◽  
pp. 315-341 ◽  
Author(s):  
Blanca Andres ◽  
Karlis Livkiss ◽  
Juan P Hidalgo ◽  
Patrick van Hees ◽  
Luke Bisby ◽  
...  

This article presents the experimental results of stone wool–layered sandwich constructions, with either steel or gypsum claddings, tested under four different heating exposures: 7 kW/m2 incident radiant heat flux exposure, 60 kW/m2 incident radiant heat flux exposure, parametric time–temperature curve exposure and ISO 834 standard time–temperature exposure. The test apparatus used were a movable radiant panel system, a mid-scale furnace (1.5 m3) and a large-scale furnace (15 m3). The results show that reduced-scale tests are capable of reproducing the heat transferred through the construction at large scale provided there is limited mechanical degradation. The results indicate that the availability of oxygen is fundamental to the fire behaviour of the sandwich composites tested. Reactions occurring in stone wool micro-scale testing, such as oxidative combustion of the binder or crystallisation of the fibres, have a limited effect on the temperature increase when wool is protected from air entrainment.


Author(s):  
Cathy Hohenegger

Even though many features of the vegetation and of the soil moisture distribution over Africa reflect its climatic zones, the land surface has the potential to feed back on the atmosphere and on the climate of Africa. The land surface and the atmosphere communicate via the surface energy budget. A particularly important control of the land surface, besides its control on albedo, is on the partitioning between sensible and latent heat flux. In a soil moisture-limited regime, for instance, an increase in soil moisture leads to an increase in latent heat flux at the expanse of the sensible heat flux. The result is a cooling and a moistening of the planetary boundary layer. On the one hand, this thermodynamically affects the atmosphere by altering the stability and the moisture content of the vertical column. Depending on the initial atmospheric profile, convection may be enhanced or suppressed. On the other hand, a confined perturbation of the surface state also has a dynamical imprint on the atmospheric flow by generating horizontal gradients in temperature and pressure. Such gradients spin up shallow circulations that affect the development of convection. Whereas the importance of such circulations for the triggering of convection over the Sahel region is well accepted and well understood, the effect of such circulations on precipitation amounts as well as on mature convective systems remains unclear. Likewise, the magnitude of the impact of large-scale perturbations of the land surface state on the large-scale circulation of the atmosphere, such as the West African monsoon, has long been debated. One key issue is that such interactions have been mainly investigated in general circulation models where the key involved processes have to rely on uncertain parameterizations, making a definite assessment difficult.


Sign in / Sign up

Export Citation Format

Share Document