scholarly journals Development of Gas Flow Rate Measurement Technique in Intermittent Two-Phase Flow in a Complex Channel

2018 ◽  
Vol 32 (1) ◽  
pp. 73-79
Author(s):  
Kiyora IWAKAMI ◽  
Yuzo INOUE ◽  
Akiko KANEKO ◽  
Yutaka ABE ◽  
Mitsuaki SAKAI
2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


1991 ◽  
Vol 6 (03) ◽  
pp. 265-270 ◽  
Author(s):  
T.D. Darwich ◽  
Haluk Toral ◽  
J.S. Archer

Author(s):  
Enrico Munari ◽  
Michele Pinelli

Nowadays, wet gas flow rate measurement is still a challenge for experimental investigators and it is becoming an even more important issue to overcome in the turbomachinery sector as well, due to the increasing trend of wet compression applications in industry. The requirement to determine gas turbine performance when processing a wet gas leads to the need to understand certain phenomena, such as type of liquid flow re-distribution, and errors introduced when the mass flow rate measurement of a two-phase gas is attempted. Unfortunately, this measurement is often affected by the presence of liquid. Literature does not offer a unique definition of the term wet gas, although it is recognized that a wet gas can generally be defined as a two-phase gas in which the liquid percentage is lower than the gas one. This paper aims to collect and describe the main works present in literature in order to clarify i) the most used parameters that describe the types of wet gas, and ii) the types of errors and flow patterns which occur in different types of applications, in terms of pressure, percentage of liquid, Reynolds number, etc. Therefore, this literature review offers a comprehensive description of the possible effects of liquid presence in a wet gas and, and an in-depth analysis of the limitations and beneficial effects of current single-phase flow rate sensors in order to identify the best solutions, and empirical corrections available in literature to overcome this challenge.


Sign in / Sign up

Export Citation Format

Share Document