Airfoil Trailing Edge Noise Reduction Using a Boundary-Layer Bump

2019 ◽  
Vol 105 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Yuejun Shi ◽  
Seongkyu Lee

This paper presents a new idea of reducing airfoil trailing edge noise using a small bump in the turbulent boundary layer. First, we develop and validate a new computational approach to predict airfoil trailing edge noise using steady RANS CFD, an empirical wall pressure spectrum model, and Howe's diff raction theory. This numerical approach enables fast and accurate predictions of trailing edge noise, which is used to study the noise reduction from the bump for various airfoil geometries and flow conditions at high Reynolds numbers. Three types of bumps, the suction-side bump, pressure-side bump, and both-side bumps, are studied. The results show that all types of bumps are able to reduce far-field noise up to 10 dB compared to clean airfoils, but their impacts are diff erent in terms of the eff ective frequency range. Also, bumps with four diff erent heights are compared with each other to investigate the eff ect of the height of bumps on noise reduction. It is demonstrated that a bump causes velocity deficit within the boundary layer near the wall. This velocity deficit results in reduced turbulence kinetic energy near the wall, which is responsible for trailing edge noise reduction. Overall, this paper demonstrates the potential of a boundary-layer bump in trailing edge noise reduction and sheds light on the physical mechanism of noise reduction with boundary-layer bumps.

Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


2019 ◽  
Vol 27 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Seongkyu Lee

This paper investigates the effect of airfoil shape on trailing edge noise. The boundary layer profiles are obtained by XFOIL and the trailing edge noise is predicted by a TNO semi-empirical model. In order to investigate the noise source characteristics, the wall pressure spectrum is decomposed into three components. This decomposition helps in finding the dominant source region and the peak noise frequency for each airfoil. The method is validated for a NACA0012 airfoil, and then five additional wind turbine airfoils are examined: NACA0018, DU96-w-180, S809, S822 and S831. It is found that the dominant source region is around 40% of the boundary layer thickness for both the suction and pressure sides for a NACA0012 airfoil. As airfoil thickness and camber increase, the maximum source region moves slightly upward on the suction side. However, the effect of the airfoil shape on the maximum source region on the pressure side is negligible, except for the S831 airfoil, which exhibits an extension of the noise source region near the wall at high frequencies. As airfoil thickness and camber increase, low frequency noise is increased. However, a higher camber reduces low frequency noise on the pressure side. The maximum camber position is also found to be important and its rear position increases noise levels on the suction side.


2020 ◽  
Vol 32 (8) ◽  
pp. 085104 ◽  
Author(s):  
Máté Szőke ◽  
Daniele Fiscaletti ◽  
Mahdi Azarpeyvand

2015 ◽  
Vol 780 ◽  
pp. 167-191 ◽  
Author(s):  
S. Pröbsting ◽  
S. Yarusevych

The subject of this experimental study is the feedback effects due to tonal noise emission in a laminar separation bubble (LSB) formed on the suction side of an airfoil in low Reynolds number flows. Experiments were performed on a NACA 0012 airfoil for a range of chord-based Reynolds numbers $0.65\times 10^{5}\leqslant \mathit{Re}_{c}\leqslant 4.5\times 10^{5}$ at angle of attack ${\it\alpha}=2^{\circ }$, where laminar boundary layer separation is encountered on both sides of the airfoil. Simultaneous time-resolved, two-component particle image velocimetry (PIV) measurements, unsteady surface pressure and far-field acoustic pressure measurements were employed to characterize flow development and acoustic emissions. Amplification of disturbances in separated shear layers on both the suction and pressure sides of the airfoil leads to shear layer roll-up and shedding of vortices from separation bubbles. When the vortices do not break up upstream of the trailing edge, the passage of these structures over the trailing edge generates tonal noise. Acoustic feedback between the trailing edge noise source and the upstream separation bubble narrows the frequency band of amplified disturbances, effectively locking onto a particular frequency. Acoustic excitation further results in notable changes to the overall separation bubble characteristics. Roll-up vortices forming on the pressure side, where the bubble is located closer to the trailing edge, are shown to define the characteristic frequency of pressure fluctuations, thereby affecting the disturbance spectrum on the suction side. However, when the bubble on the pressure side is suppressed via boundary layer tripping, a weaker feedback effect is also observed on the suction side. The results give a detailed quantitative description of the observed phenomenon and provide a new outlook on the role of coherent structures in separation bubble dynamics and trailing edge noise generation.


AIAA Journal ◽  
2018 ◽  
Vol 56 (5) ◽  
pp. 1843-1854 ◽  
Author(s):  
B. Arnold ◽  
T. Lutz ◽  
E. Krämer ◽  
C. Rautmann

Sign in / Sign up

Export Citation Format

Share Document