The Effect of Pulsed Blowing on the Boundary Layer of a Highly Loaded Low Pressure Turbine Blade

Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.

2004 ◽  
Vol 128 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three-dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Marion Mack ◽  
Reinhard Niehuis ◽  
Andreas Fiala ◽  
Yavuz Guendogdu

The current work investigates the performance benefits of pulsed blowing with frequencies up to 10 kHz on a highly loaded low pressure turbine (LPT) blade. The influence of blowing position and frequency on the boundary layer and losses are investigated. Pressure profile distribution measurements and midspan wake traverses are used to assess the effects on the boundary layer under a wide range of Reynolds numbers from 50,000 to 200,000 at a cascade exit Mach number of 0.6 under steady as well as periodically unsteady inflow conditions. High-frequency blowing at sufficient amplitudes is achieved with the use of fluidic oscillators. The integral loss coefficient calculated from wake traverses is used to assess the optimum pressure ratio driving the fluidic oscillators. The results show that pulsed blowing with fluidic oscillators can significantly reduce the profile losses of the highly loaded LPT blade T161 with a moderate amount of air used in a wide range of Reynolds numbers under both steady and unsteady inflow conditions.


Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Rau´l Va´zquez ◽  
Antonio Antoranz ◽  
David Cadrecha ◽  
Leyre Arman˜anzas

This paper presents an experimental study of the flow field in an annular cascade of Low Pressure Turbine airfoils. The influence of Reynolds number, Mach number and incidence on profile and end wall losses have been investigated. The annular cascade consisted of 100 high lift, high aspect ratio, high turning blades that are characteristic of modern LP Turbines. The investigation was carried out for a wide range of Reynolds numbers, extending from 120k to 315k, exit Mach numbers, from 0.5 to 0.9, and incidences from −20 to +14 degrees. Results clearly indicate a significant effect of incidence and Mach number in secondary loss production; however, the Reynolds number shows it much weaker impact. It has also been found that the profile loss production is strongly influenced by both Reynolds and Mach numbers, being the impact of the incidence weaker. Finally, measured data suggest that, in order to properly reproduce the performance of these types of airfoils, annular cascades can be required as far as linear cascades may miss some essential flow features.


2021 ◽  
pp. 1-17
Author(s):  
Maxime Fiore ◽  
Nicolas Gourdain

Abstract This paper presents the Large Eddy Simulation of a Low-Pressure Turbine Nozzle Guide Vane for different Reynolds (Re) and Mach numbers (Ma) with or without inlet turbulence prescribed. The analysis is based on a slice of a LPT blading representative of a midspan flow. The characteristic Re of the LPT can vary by a factor of four between take-off and cruise conditions. In addition, the LPT operates at different Ma and the incident flow can have significant levels of turbulence due to upstream blade wakes. The paper investigates numerically using LES the flow around a LPT blading with three different Reynolds number Re = 175'000 (cruise), 280'000 (mid-level altitude) and 500'000 (take-off) keeping the same characteristic Mach number Ma = 0.2 and three different Mach number Ma = 0.2, 0.5 and 0.8 keeping the same Reynolds number Re= 280'000. These different simulations are performed with 0% Free Stream Turbulence (FST) followed by inlet turbulence (6% FST). The study focuses on different flow characteristics: pressure distribution around the blade, near-wall flow behavior, loss generation and Turbulent Kinetic Energy budget. The results show an earlier boundary layer separation on the aft of the blade suction side when the Re is increased while the free-stream turbulence delays separation. The TKE budget shows the predominant effect of the turbulent production and diffusion in the wake, the axial evolution of these different terms being relatively insensitive to Re and Ma.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Author(s):  
Wenhua Duan ◽  
Jian Liu ◽  
Weiyang Qiao

Abstract A numerical analysis of the effect of Mach number on the boundary layer development and aerodynamic performance of a high-lift, after loaded low pressure turbine blade is presented in this paper. The turbine blade is designed for the GTF engine and works in a low Reynolds number, high Mach number environment. Three different isentropic exit Mach numbers (0.14, 0.87 and 1.17) are simulated by large eddy simulation method, while the Reynolds number based on the axial chord length of the blade and the exit flow velocity is kept the same (1 × 105). The condition Mais,2 = 0.14 represents the lowspeeed wind tunnel environment which is usually used in the low pressure turbine investigation. The condition Mais,2 = 0.87 represents the design point of the turbine blade. The condition Mais,2 = 1.17 represents the severe environment when the shock wave shows up. A comparison of the boundary layer development is made and the total pressure loss results from the boundary layer is discussed.


Author(s):  
E. M. Curtis ◽  
H. P. Hodson ◽  
M. R. Banieghbal ◽  
J. D. Denton ◽  
R. J. Howell ◽  
...  

This paper describes a programme of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades 10 simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds Number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20%, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.


Author(s):  
Christian Brück ◽  
Christoph Lyko ◽  
Dieter Peitsch ◽  
Christoph Bode ◽  
Jens Friedrichs ◽  
...  

The efficiency of modern Turbofan engines can be significantly increased by using a gearbox between compressor and turbine of the low pressure section. Rotational speed of the low pressure turbine (LPT) in a Geared Turbofan is much higher than in normal LPT’s which lead to necessary adjustments in blade design. This work has investigated the transition behavior of a modified profile geometry for low-loss at engine cruise conditions. Typical LPT conditions have thus been chosen as baseline for the experimental work. A pressure distribution has been created on a flat plate by means of contoured walls in a low speed wind tunnel. The paper will analyze the experimental results and show additionally the numerical predictions of the test case. The experimental part of this paper describe how the blade was Mach number scaled to obtain the geometry of the wind tunnel wall contour. The pressure distribution for the incompressible test case show a very good agreement to the compressible case. Boundary layer (BL) measurements with hot-wire-anemometry have been performed at high spatial resolution under a freestream turbulence of almost 8%. Different Reynolds numbers have been investigated and will be compared with special attention being paid to the transition on the suction side by contour plots (turbulence levels, turbulent intermittency) and integral BL parameters. It was found that the transition on the suction side is not completed for small Reynolds numbers but takes place at higher velocities. In the numerical part studies by means of steady RANS simulations with k-ω – SST turbulence model and γ-Reθ transition model have been conducted. The aim is to validate the RANS solver for the low-loss LPT application. Hence, comparison is made to the measured data and the transitional behavior of the BL. Furthermore, additional parameter variations have been conducted (turbulence intensity and Reynolds number). The numerical investigations show partially a good comparison for the BL development indicating the different transition modi with increasing Reynolds number and turbulence intensity.


Sign in / Sign up

Export Citation Format

Share Document