scholarly journals Estudo da Aplicação dos Filtros de Partículas e Filtro de Kalman Estendido em Dados de Sensores RADAR e LIDAR / Study of the Application of Particle Filters and Extended Kalman Filter in RADAR and LIDAR Sensor Data

2021 ◽  
Vol 4 (4) ◽  
pp. 145-154
Author(s):  
Moysés de Oliveira Neto ◽  
Luiz Felipe Ribeiro Barrozo Toledo
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xin Li ◽  
Yan Wang ◽  
Dawei Liu

As UWB high-precision positioning in NLOS environment has become one of the hot topics in the research of indoor positioning, this paper firstly presents a method for the smoothing of original range data based on the Kalman filter by the analysis of the range error caused by UWB signals in LOS and NLOS environment. Then, it studies a UWB and foot-mounted IMU fusion positioning method with the integration of particle filter with extended Kalman filter. This method adopts EKF algorithm in the kinematic equation of particle filters algorithm to calculate the position of each particle, which is like the way of running N (number of particles) extended Kalman filters, and overcomes the disadvantages of the inconformity between kinematic equation and observation equation as well as the problem of sample degeneration under the nonlinear condition of the standard particle filters algorithm. The comparison with the foot-mounted IMU positioning algorithm, the optimization-based UWB positioning algorithm, the particle filter-based UWB positioning algorithm, and the particle filter-based IMU/UWB fusion positioning algorithm shows that our algorithm works very well in LOS and NLOS environment. Especially in an NLOS environment, our algorithm can better use the foot-mounted IMU positioning trajectory maintained by every particle to weaken the influence of range error caused by signal blockage. It outperforms the other four algorithms described as above in terms of the average and maximum positioning error.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 803 ◽  
Author(s):  
Ákos Odry ◽  
Istvan Kecskes ◽  
Peter Sarcevic ◽  
Zoltan Vizvari ◽  
Attila Toth ◽  
...  

This paper proposes a novel fuzzy-adaptive extended Kalman filter (FAEKF) for the real-time attitude estimation of agile mobile platforms equipped with magnetic, angular rate, and gravity (MARG) sensor arrays. The filter structure employs both a quaternion-based EKF and an adaptive extension, in which novel measurement methods are used to calculate the magnitudes of system vibrations, external accelerations, and magnetic distortions. These magnitudes, as external disturbances, are incorporated into a sophisticated fuzzy inference machine, which executes fuzzy IF-THEN rules-based adaption laws to consistently modify the noise covariance matrices of the filter, thereby providing accurate and robust attitude results. A six-degrees of freedom (6 DOF) test bench is designed for filter performance evaluation, which executes various dynamic behaviors and enables measurement of the true attitude angles (ground truth) along with the raw MARG sensor data. The tuning of filter parameters is performed with numerical optimization based on the collected measurements from the test environment. A comprehensive analysis highlights that the proposed adaptive strategy significantly improves the attitude estimation quality. Moreover, the filter structure successfully rejects the effects of both slow and fast external perturbations. The FAEKF can be applied to any mobile system in which attitude estimation is necessary for localization and external disturbances greatly influence the filter accuracy.


Sign in / Sign up

Export Citation Format

Share Document