scholarly journals Genome‐Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm

2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Richard E. Boyles ◽  
Elizabeth A. Cooper ◽  
Matthew T. Myers ◽  
Zachary Brenton ◽  
Bradley L. Rauh ◽  
...  
Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Gina Brown-Guedira ◽  
Yanhong Dong ◽  
Herbert Ohm ◽  
Mohsen Mohammadi

Identification of quantitative trait loci for Fusarium head blight (FHB) resistance from different sources and pyramiding them into cultivars could provide effective protection against FHB. The objective of this study was to characterize a soft red winter wheat (SRWW) breeding population that has been subjected to intense germplasm introduction and alien introgression for FHB resistance in the past. The population was evaluated under misted FHB nurseries inoculated with Fusarium graminearum infested corn spawn for two years. Phenotypic data included disease incidence (INC), disease severity (SEV), Fusarium damaged kernels (FDK), FHB index (FHBdx), and deoxynivalenol concentration (DON). Genome-wide association studies by using 13,784 SNP markers identified twenty-five genomic regions at -logP ≥ 4.0 that were associated with five FHB-related traits. Of these 25, the marker trait associations that explained more than 5% phenotypic variation were localized on chromosomes 1A, 2B, 3B, 5A, 7A, 7B, and 7D, and from diverse sources including adapted SRWW lines such as Truman and Bess, and unadapted common wheat lines such as Ning7840 and Fundulea 201R. Furthermore, individuals with favorable alleles at the four loci Fhb1, Qfhb.nc-2B.1 (Q2B.1), Q7D.1, and Q7D.2 showed better FDK and DON scores (but not INC, SEV, and FHBdx) compared to other allelic combinations. Our data also showed while pyramiding multiple loci provides protection against FHB disease, it has significant trade-off with grain yield.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190162 ◽  
Author(s):  
Giacomo Mangini ◽  
Agata Gadaleta ◽  
Pasqualina Colasuonno ◽  
Ilaria Marcotuli ◽  
Antonio M. Signorile ◽  
...  

2018 ◽  
Author(s):  
Brian P. Ward ◽  
Gina Brown-Guedira ◽  
Frederic L. Kolb ◽  
David A. Van Sanford ◽  
Priyanka Tyagi ◽  
...  

AbstractGrain yield is a trait of paramount importance in the breeding of all cereals. In wheat (Triticum aestivum L.), yield has steadily increased since the Green Revolution, though the current rate of increase is not forecasted to keep pace with demand due to growing world population and affluence. While several genome-wide association studies (GWAS) on yield and related component traits have been performed in wheat, the previous lack of a reference genome has made comparisons between studies difficult. In this study, a GWAS for yield and yield-related traits was carried out on a population of 324 soft red winter wheat lines across a total of four rain-fed environments in the state of Virginia using single-nucleotide polymorphism (SNP) marker data generated by a genotyping-by-sequencing (GBS) protocol. Two separate mixed linear models were used to identify significant marker-trait associations (MTAs). The first was a single-locus model utilizing a leave-one-chromosome-out approach to estimating kinship. The second was a sub-setting kinship multi-locus method (FarmCPU). The single-locus model identified nine significant MTAs for various yield-related traits, while the FarmCPU model identified 74 significant MTAs. The availability of the wheat reference genome allowed for the description of MTAs in terms of both genetic and physical positions, and enabled more extensive post-GWAS characterization of significant MTAs. The results indicate promising avenues for increasing grain yield by exploiting variation in traits relating to the number of grains per unit area, as well as phenological traits influencing grain-filling duration of genotypes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Idan Sabag ◽  
Gota Morota ◽  
Zvi Peleg

Abstract Background Unrevealing the genetic makeup of crop morpho-agronomic traits is essential for improving yield quality and sustainability. Sesame (Sesamum indicum L.) is one of the oldest oil-crops in the world. Despite its economic and agricultural importance, it is an ‘orphan crop-plant’ that has undergone limited modern selection, and, as a consequence preserved wide genetic diversity. Here we established a new sesame panel (SCHUJI) that contains 184 genotypes representing wide phenotypic variation and is geographically distributed. We harnessed the natural variation of this panel to perform genome-wide association studies for morpho-agronomic traits under the Mediterranean climate conditions. Results Field-based phenotyping of the SCHUJI panel across two seasons exposed wide phenotypic variation for all traits. Using 20,294 single-nucleotide polymorphism markers, we detected 50 genomic signals associated with these traits. Major genomic region on LG2 was associated with flowering date and yield-related traits, exemplified the key role of the flowering date on productivity. Conclusions Our results shed light on the genetic architecture of flowering date and its interaction with yield components in sesame and may serve as a basis for future sesame breeding programs in the Mediterranean basin.


2021 ◽  
Author(s):  
Idan Sabag ◽  
Gota Morota ◽  
Zvi Peleg

AbstractUnrevealing the genetic makeup of crop morpho-agronomic traits is essential for improving yield quality and sustainability. Sesame (Sesamum indicum L.), one of the oldest oil-crops in the world, which despite its economical and agricultural importance, is an ‘orphan crop-plant’ that undergone limited modern selection, thus, preserving wide genetic diversity. Here we harnessed this natural variation in a newly developed sesame panel (SCHUJI) to perform genome-wide association studies for morpho-agronomic traits under the Mediterranean climate conditions. Field-based phenotyping of the SCHUJI panel across two seasons exposed wide phenotypic variation for all traits. Using 20,294 single-nucleotide polymorphism markers, we detected 50 genomic signals associated with these traits. Major genomic region on LG2 was associated with flowering date and yield-related traits, exemplified the key role of the flowering date on productivity. Our results shed light on the genetic architecture of flowering date and its interaction with yield components in sesame and may serve as a basis for future sesame breeding programs in the Mediterranean basin.


Sign in / Sign up

Export Citation Format

Share Document