Cooperative spectrum leasing using parallel communication of secondary users

2013 ◽  
Vol 7 (8) ◽  
pp. 1770-1785
2014 ◽  
Vol 5 (2) ◽  
pp. 61-74 ◽  
Author(s):  
Fatemeh Afghah ◽  
Abolfazl Razi

In this paper, a novel property-right spectrum leasing solution based on Stackelberg game is proposed for Cognitive Radio Networks (CRN), where part of the secondary users present probabilistic dishonest behavior. In this model, the Primary User (PU) as the spectrum owner allows the Secondary User (SU) to access the shared spectrum for a fraction of time in exchange for providing cooperative relaying service by the SU. A reputation based mechanism is proposed that enables the PU to monitor the cooperative behavior of the SUs and restrict its search space at each time slot to the secondary users that do not present dishonest behavior in the proceeding time slots. The proposed reputation-based solution outperforms the classical Stackelberg games from both primary and reliable secondary users' perspectives. This novel method of filtering out unreliable users increases the PU's expected utility over consecutive time slots and also encourages the SUs to follow the game rule.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Li Wang ◽  
Feng Li

During secondary user’s dynamic access to authorized spectrum, a key issue is how to ascertain an appropriate spectrum price so as to maximize primary system’s benefit and satisfy secondary user’s diverse spectrum demands. In this paper, a scheme of pricing-based dynamic spectrum access is proposed. According to the diverse qualities of idle spectrum, the proposed scheme applies a Hotelling game model to form the spectrum pricing problem. Firstly, establish a model of spectrum leasing, among which the idle spectrum with different qualities constitutes a spectrum pool. Then, divide the idle spectrum into equivalent width of leased channels, which will be uniformly sold in order. Secondary users can choose proper channels to purchase in the spectrum pool according to their spectrum usage preferences which are subject to normal distribution and affected by the spectrum quality along with market estimation. This paper analyzes the effect of spectrum pricing according to the primary system’s various tendencies to spectrum usage and economic income. Numerical results evaluate the effectiveness of the proposed pricing method in improving the primary system’s profits.


2010 ◽  
Vol 9 (12) ◽  
pp. 3739-3749 ◽  
Author(s):  
R Di Taranto ◽  
P Popovski ◽  
O Simeone ◽  
H Yomo

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6161
Author(s):  
Denis Bilibashi ◽  
Enrico M. Vitucci ◽  
Vittorio Degli-Esposti ◽  
Andrea Giorgetti

Cooperative Communications in Cognitive Radio (CR) have been introduced as an essential and efficient technique to improve the transmission performance of primary users and offer transmission opportunities for secondary users. In a typical multiuser Cooperative Communication in CR, each primary user can choose one secondary user as a relay node. To encourage the cooperative behavior of the secondary users, primary users lease a fraction of their allocated spectrum to the relay secondary users to transmit their data packets. In this work, a novel unselfish spectrum leasing scheme in CR networks is proposed that offers an energy-efficient solution minimizing the environmental impact of our network. A network management architecture is introduced, and resource allocation is proposed as a constrained sum energy efficiency maximization problem. The optimization problem is formulated and solved using non-linear programming methods and based on a modified Kuhn-Munkres bipartite matching algorithm. System simulations demonstrate an increment in the energy efficiency of the primary users’ network compared with previously proposed algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
S. Tephillah ◽  
J. Martin Leo Manickam

Security is a pending challenge in cooperative spectrum sensing (CSS) as it employs a common channel and a controller. Spectrum sensing data falsification (SSDF) attacks are challenging as different types of attackers use them. To address this issue, the sifting and evaluation trust management algorithm (SETM) is proposed. The necessity of computing the trust for all the secondary users (SUs) is eliminated based on the use of the first phase of the algorithm. The second phase is executed to differentiate the random attacker and the genuine SUs. This reduces the computation and overhead costs. Simulations and complexity analyses have been performed to prove the efficiency and appropriateness of the proposed algorithm for combating SSDF attacks.


2019 ◽  
Vol 23 (10) ◽  
pp. 1696-1699 ◽  
Author(s):  
Zhiguo Sun ◽  
Zhenyu Xu ◽  
Muhammad Zahid Hammad ◽  
Xiaoyan Ning ◽  
Qiuying Wang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document