scholarly journals An expanded Matrix Factorization model for real-time Web service QoS prediction

2013 ◽  
Vol 6 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Zibin Zheng ◽  
Hao Ma ◽  
Michael R. Lyu ◽  
Irwin King

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Wenming Ma ◽  
Rongjie Shan ◽  
Mingming Qi

To avoid the expensive and time-consuming evaluation, collaborative filtering (CF) methods have been widely studied for web service QoS prediction in recent years. Among the various CF techniques, matrix factorization is the most popular one. Much effort has been devoted to improving matrix factorization collaborative filtering. The key idea of matrix factorization is that it assumes the rating matrix is low rank and projects users and services into a shared low-dimensional latent space, making a prediction by using the dot product of a user latent vector and a service latent vector. Unfortunately, unlike the recommender systems, QoS usually takes continuous values with very wide range, and the low rank assumption might incur high bias. Furthermore, when the QoS matrix is extremely sparse, the low rank assumption also incurs high variance. To reduce the bias, we must use more complex assumptions. To reduce the variance, we can adopt complex regularization techniques. In this paper, we proposed a neural network based framework, named GCF (general collaborative filtering), with the dropout regularization, to model the user-service interactions. We conduct our experiments on a large real-world dataset, the QoS values of which are obtained from 339 users on 5825 web services. The comprehensive experimental studies show that our approach offers higher prediction accuracy than the traditional collaborative filtering approaches.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


Sign in / Sign up

Export Citation Format

Share Document