scholarly journals Differential induction of allergy responses by low molecular weight wheat proteins from six wheat cultivars

2017 ◽  
Vol 60 (1) ◽  
pp. 55-59
Author(s):  
Miju Cho ◽  
Hyeri Lee ◽  
Min Hee Hwang ◽  
Young-Keun Cheong ◽  
Chon-Sik Kang ◽  
...  
2021 ◽  
Vol 22 (14) ◽  
pp. 7709
Author(s):  
Kyoungwon Cho ◽  
You-Ran Jang ◽  
Sun-Hyung Lim ◽  
Susan B. Altenbach ◽  
Yong Q. Gu ◽  
...  

The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.


2011 ◽  
Vol 62 (9) ◽  
pp. 746 ◽  
Author(s):  
H. Jin ◽  
J. Yan ◽  
R. J. Peña ◽  
X. C. Xia ◽  
A. Morgounov ◽  
...  

The composition and quantity of high- and low-molecular-weight glutenin subunits (HMW-GS and LMW-GS) plays an important role in determining the end-use quality of wheat products. In the present study, 718 wheat cultivars and advanced lines from 20 countries were characterised for the HMW-GS and LMW-GS with allele-specific molecular markers. For the Glu-A1 locus, 311 cultivars (43.3%) had the subunit Ax2*, which predominated in cultivars from Canada (83.3%), Romania (91.7%), Russia (72.2%) and USA (72.2%). At Glu-B1 locus, 197 cultivars (27.4%) contained the By8 subunit and its frequency was higher in Japanese (60.0%) and Romanian (62.5%) genotypes than in those from other countries; 264 cultivars (36.8%) carried the By9 subunit, mostly existing in the cultivars from Austria (100.0%), Russia (72.2%), and Serbia (72.7%); the By16 subunit was present in 44 cultivars (6.1%), with a relatively high percentage in Chile (19.5%), whereas almost no cultivars from other countries had this subunit; the frequency of Bx7OE was 3.1%, and was found only in cultivars from Argentina (12.1%), Australia (4.1%), Canada (25.0%), Iran (20.0%), and Japan (30.0%). There were 446 genotypes (62.1%) with the subunit Dx5 at the Glu-D1 locus; high frequencies of Dx5 occurred in cultivars from Hungary (90.0%), Romania (95.8%), and Ukraine (92.3%). At the Glu-A3 locus, the frequencies of Glu-A3a, b, c, d, e, f and g were 2.9, 6.8, 53.2, 12.8, 7.7, 13.8, and 2.4%, respectively. Glu-A3a was detected only in the cultivars from Bulgaria (13.3%), China (12.2%), Germany (2.7%), Iran (6.7%), Mexico (14.3%), Turkey (4.7%), and USA (5.1%); the high frequencies of superior alleles Glu-A3b and d were found in cultivars from Australia (39.7%) and France (24.5%); Glu-A3c was widely distributed in cultivars from all the countries; the high frequencies of Glu-A3e, f and g were detected in cultivars from Argentina (33.3%), Canada (29.2%), and Hungary (20.0%). At the Glu-B3 locus, Glu-B3a, b, c, d, e, f, g, h and i were present in frequencies of 0.4, 22.3, 0.3, 2.8, 1.9, 3.9, 27.2, 18.8, and 7.1%, respectively. Glu-B3a was detected only in cultivars from Argentina (3.0%) and Ukraine (15.4%) cultivars; high frequencies of Glu-B3b and d were found in the cultivars from Romania (62.5%) and Mexico (14.3%); Glu-B3c was detected only in Romanian (8.3%) genotypes; frequencies of e, f, h and i were high in cultivars from Austria (40.0%), China (14.3%), USA (43.0%), and Argentina (33.3%); Glu-B3g was mostly detected in the cultivars from Germany (69.3%), Norway (77.3%), and Serbia (63.6%). The frequency of the 1B·1R translocation was 13.4%; it occurred in cultivars from all the countries except Australia, Austria, Norway, and Serbia. The functional markers applied in this study, in agreement with the results of sodium-dodecylsulfate–polyacrylamide gel electrophoresis, were accurate and stable, and can be used effectively in wheat quality breeding.


1987 ◽  
Vol 67 (4) ◽  
pp. 945-952 ◽  
Author(s):  
B. A. MARCHYLO

Sodium dodecyl sulphate gradient polyacrylamide gel electrophoresis (SDSGPAGE) was used to resolve gliadin and high- and low-molecular-weight glutenin subunits from 19 registered Canadian spring wheat cultivars eligible for Canada Western Red Spring (CWRS) and Canada Prairie Spring (CPS) wheat grades and eight nonregistered spring wheat cultivars from the U.S.A. Reproducible molecular weight estimates were obtained for wheat proteins of apparent molecular weights ranging from 34 238 to 136 174 (avg. CV = 0.72%). Eight different patterns of HMW glutenin subunits consisting of 7–11 protein bands were observed for the 27 cultivars and their biotypes. SDSGPAGE was able to discriminate among the majority of cultivars with all non-registered cultivars and their biotypes distinguishable from registered cultivars. Separation of glutenin subunits along with gliadins provided additional protein bands which assisted in the discrimination of cultivars.Key words: SDS gradient PAGE, wheat cultivar identification, gliadin, glutenin subunits


2021 ◽  
pp. 776-783
Author(s):  
I.A. Tarasova ◽  
K.B. Gurieva ◽  
E.A. Tarasova ◽  
S.L. Beletskiy ◽  
N.A. Khaba

The results of the molecular weight distribution of wheat proteins and macaroni products are presented. The fractional composition of proteins was determined by gel permeation chromatography on a Knauer Smartline chromatograph; preliminary hydrolysis was carried out using a thermostable bacterium α-Amylase, then it was centrifuged, filtered through a Teflon filter, and the size of protein molecules was determined by photometric detection at a wavelength of 280 nm. It has been shown that the main protein fraction in both wheat and macaroni products is a low molecular weight fraction up to 3 kD (up to 79.4% of all protein fractions). The fraction with low and medium molecular weight from 3 to 10 kD accounted for 2.7 to 48.2%, while the fraction with a molecular weight of more than 10 kD accounted for up to 15.2%. During storage, a redistribution of protein fractions and their enlargement were noted. English version of the article is available at URL: https://panor.ru/articles/study-of-the-fractional-composition-of-wheat-proteins-and-pasta-products-during-storage/74321.html


1996 ◽  
Vol 36 (4) ◽  
pp. 451 ◽  
Author(s):  
CY Liu ◽  
AJ Rathjen

A large set of durum wheat lines (79 including 8 advanced Australian breeding lines) randomly collected from 11 countries and 11 bread wheat cultivars were grown in replicated trials at 2 field locations to compare yield and gluten quality. Gluten strength, as measured by the sodium dodecyl sulfate (SDS)-sedimentation (SDSS) test, varied considerably among the durum lines and was associated with the presence of specific glutenins. Unlike some previous reports, the present study showed that durum wheat cultivars having the high molecular weight (HMW) glutenin subunits coded by Glu-B1 genes such as 13 + 16 and 7 + 8 were highly correlated with improved dough strength, which was consistent with the effect of HMW glutenin subunits on dough quality in bread wheat. Cultivars having the low molecular weight (LMW) glutenin allele LMW-2 (or gliadin band r-45) generally gave stronger gluten than lines with allele LMW-1, as reported by earlier workers. The LMW pattern LMW-IIt gave the strongest glutenin. The combined better alleles at Glu-B1 (coded bands 13 + 16, 7 + 8 v. 6 + 8, 20) and Glu-3 (patterns LMW- II, LMW-IIt v. LMW-I) showed linear cumulative effects for dough strength. All the durum lines studied had lower SDSS values than the bread wheat controls (45.8 v. 76.2 mL), though durum wheats tended to possess higher grain protein concentrations (14.0 v. 11.9%) and gave lower grain yield than bread wheat. The Australian advanced lines had higher yield and better dough strength than durums from other countries except those from CIMMYT. The Australian lines also had 1-1.5% higher protein concentration and equal or better grain yield than the bread wheat, suggesting that these lines had potential for commercial use.


Sign in / Sign up

Export Citation Format

Share Document