scholarly journals Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry

Author(s):  
Felipe Leitner ◽  
◽  
◽  
2013 ◽  
Vol 25 (08) ◽  
pp. 1330011 ◽  
Author(s):  
ADRIAN MIHAI IONESCU ◽  
VLADIMIR SLESAR ◽  
MIHAI VISINESCU ◽  
GABRIEL EDUARD VÎLCU

We study the interplay between the basic Dirac operator and the transversal Killing and twistor spinors. In order to obtain results for the general Riemannian foliations with bundle-like metric, we consider transversal Killing spinors that appear as natural extension of the harmonic spinors associated with the basic Dirac operator. In the case of foliations with basic-harmonic mean curvature, it turns out that this type of spinors coincide with the standard definition. We obtain the corresponding version of classical results on closed Riemannian manifold with spin structure, and extending some previous results.


2007 ◽  
Vol 40 (6) ◽  
pp. 885-900 ◽  
Author(s):  
J DOLBEAULT ◽  
M ESTEBAN ◽  
J DUOANDIKOETXEA ◽  
L VEGA
Keyword(s):  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Hwancheol Jeong ◽  
Chulwoo Jung ◽  
Seungyeob Jwa ◽  
Jangho Kim ◽  
Jeehun Kim ◽  
...  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Magdalena Larfors ◽  
Matthew Magill ◽  
Robin Schneider

Abstract Heterotic compactifications on Calabi-Yau threefolds frequently exhibit textures of vanishing Yukawa couplings in their low energy description. The vanishing of these couplings is often not enforced by any obvious symmetry and appears to be topological in nature. Recent results used differential geometric methods to explain the origin of some of this structure [1, 2]. A vanishing theorem was given which showed that the effect could be attributed, in part, to the embedding of the Calabi-Yau manifolds of interest inside higher dimensional ambient spaces, if the gauge bundles involved descended from vector bundles on those larger manifolds. In this paper, we utilize an algebro-geometric approach to provide an alternative derivation of some of these results, and are thus able to generalize them to a much wider arena than has been considered before. For example, we consider cases where the vector bundles of interest do not descend from bundles on the ambient space. In such a manner we are able to highlight the ubiquity with which textures of vanishing Yukawa couplings can be expected to arise in heterotic compactifications, with multiple different constraints arising from a plethora of different geometric features associated to the gauge bundle.


Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


Sign in / Sign up

Export Citation Format

Share Document