scholarly journals WEIGHT MINIMIZATION OF TRUSS STRUCTURES WITH SIZING AND LAYOUT VARIABLES USING INTEGRATED PARTICLE SWARM OPTIMIZER

2017 ◽  
Vol 23 (8) ◽  
pp. 985-1001 ◽  
Author(s):  
Ali MORTAZAVI ◽  
Vedat TOĞAN ◽  
Ayhan NUHOĞLU

This study investigates the performances of the integrated particle swarm optimizer (iPSO) algorithm in the layout and sizing optimization of truss structures. The iPSO enhances the standard PSO algorithm employing both the concept of weighted particle and the improved fly-back method to handle optimization constraints. The performance of the recent algorithm is tested on a series of well-known truss structures weight minimization problems including mixed design search spaces (i.e. with both discrete and continuous variables) over various types of constraints (i.e. nodal dis­placements, element stresses and buckling criterion). The results demonstrate the validity of the proposed approach in dealing with combined layout and size optimization problems.

2015 ◽  
Vol 24 (05) ◽  
pp. 1550017 ◽  
Author(s):  
Aderemi Oluyinka Adewumi ◽  
Akugbe Martins Arasomwan

This paper presents an improved particle swarm optimization (PSO) technique for global optimization. Many variants of the technique have been proposed in literature. However, two major things characterize many of these variants namely, static search space and velocity limits, which bound their flexibilities in obtaining optimal solutions for many optimization problems. Furthermore, the problem of premature convergence persists in many variants despite the introduction of additional parameters such as inertia weight and extra computation ability. This paper proposes an improved PSO algorithm without inertia weight. The proposed algorithm dynamically adjusts the search space and velocity limits for the swarm in each iteration by picking the highest and lowest values among all the dimensions of the particles, calculates their absolute values and then uses the higher of the two values to define a new search range and velocity limits for next iteration. The efficiency and performance of the proposed algorithm was shown using popular benchmark global optimization problems with low and high dimensions. Results obtained demonstrate better convergence speed and precision, stability, robustness with better global search ability when compared with six recent variants of the original algorithm.


2010 ◽  
Vol 163-167 ◽  
pp. 2404-2409 ◽  
Author(s):  
Bin Yang ◽  
Qi Lin Zhang

Recently, a modified Particle Swarm Optimizer (MLPSO) has been succeeded in solving truss topological optimization problems and competitive results are obtained. Since this optimizer belongs to evolutionary algorithm and plagued by high computational cost as measured by execution time, in order to reduce its execution time for solving large complex optimization problem, a parallel version for this optimizer is studied in this paper. This paper first gives an overview of PSO algorithm as well as the modified PSO, and then a design and an implementation of parallel PSO is proposed. The performance of the proposed algorithm is tested by two examples and promising speed-up rate is obtained. Final part is conclusion and outlook.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1087
Author(s):  
Tae-Hyoung Kim ◽  
Jung-In Byun

This study presents a reliable particle swarm optimizer for sizing optimization of truss structures. This population-based stochastic optimization approach is based on the principle that each particle communicates its position and function value to a number of successively numbered neighboring particles via a fixed cyclic interaction structure. Therefore, such a neighborhood structure changes the movement pattern of the entire swarm, and allows each particle’s movement not to be driven by one global best particle position, which enhances the diversification attitude. Further, by transforming the objective function, it is possible to steer the search towards feasible regions of design space. The efficiency of the proposed approach is demonstrated by solving four classical sizing optimization problems of truss structures.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Geng Zhang ◽  
Yangmin Li

Although the original particle swarm optimizer (PSO) method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO). In case that the interacting of the elements inD-dimensional function vectorX=[x1,x2,…,xd,…,xD]is independent, cooperative particle swarm optimizer (CPSO) is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED) learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.


2012 ◽  
Vol 433-440 ◽  
pp. 4401-4408
Author(s):  
Bin Yang ◽  
Qi Lin Zhang

recently, a modified Particle Swarm Optimizer (MLPSO) has been succeeded in solving truss topological optimization problems and competitive results are obtained. In order to reduce its execution time for solving large complex optimization problem, a parallel version for this optimizer (PMLPSO) is studied in this paper. This paper first gives an overview of PSO algorithm as well as the modified PSO, and then a design and an implementation of parallel PSO is proposed. Since most of structural problems involve discrete design variables, an effect strategy is involved in MLPSO in order to operate on discrete variables. The performance of the proposed algorithm is tested by two examples and promising speed-up rate is obtained. Final part is conclusion and outlook.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Sami Zdiri ◽  
Jaouher Chrouta ◽  
Abderrahmen Zaafouri

In this study, a modified version of multiswarm particle swarm optimization algorithm (MsPSO) is proposed. However, the classical MsPSO algorithm causes premature stagnation due to the limitation of particle diversity; as a result, it is simple to slip into a local optimum. To overcome the above feebleness, this work presents a heterogeneous multiswarm PSO algorithm based on adaptive inertia weight strategies called (A-MsPSO). The MsPSO’s main advantages are that it is simple to use and that there are few settings to alter. In the MsPSO method, the inertia weight is a key parameter affecting considerably convergence, exploration, and exploitation. In this manuscript, an adaptive inertia weight is adopted to ameliorate the global search ability of the classical MsPSO algorithm. Its performance is based on exploration, which is defined as an algorithm’s capacity to search through a variety of search spaces. It also aids in determining the best ideal capability for searching a small region and determining the candidate answer. If a swarm discovers a global best location during iterations, the inertia weight is increased, and exploration in that direction is enhanced. The standard tests and indications provided in the specialized literature are used to show the efficiency of the proposed algorithm. Furthermore, findings of comparisons between A-MsPSO and six other common PSO algorithms show that our proposal has a highly promising performance for handling various types of optimization problems, leading to both greater solution accuracy and more efficient solution times.


2021 ◽  
Author(s):  
Yulong Sun ◽  
Hongjuan Li ◽  
Mohammad Shabaz ◽  
Amit Sharma

Abstract Optimization methodologies are being utilized in various structural designing practices to solve size, shape and topology optimization problems. A heuristic Particle swarm optimization (HPSO) algorithm was anticipated in this article in order to address the size optimization problem of truss with stress and displacement constraints. This article contributes in improvisation in the truss structure design rationality while reducing the engineering cost by proposing the HPSO approach. Primarily, the basic principle of the original PSO algorithm is presented, then the compression factor is established to improve the PSO algorithm, and a reasonable parameter setting value is presented. To validate the performance of the proposed optimization approach, various experimental illustrations were performed. The results show that the convergence history of experimental illustration 2 and experimental illustration 3 is optimal. The experimental illustration 2 converges after about 150 iterations, however, the experimental illustration 3 is close to the optimal solution after about 500 iterations. Therefore, the PSO algorithm can successfully optimize the size design of truss structures, and the algorithm is also time efficient. The improved PSO algorithm has good convergence and stability, and can effectively optimize the size design of truss structures.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4613
Author(s):  
Shah Fahad ◽  
Shiyou Yang ◽  
Rehan Ali Khan ◽  
Shafiullah Khan ◽  
Shoaib Ahmed Khan

Electromagnetic design problems are generally formulated as nonlinear programming problems with multimodal objective functions and continuous variables. These can be solved by either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC), have been proposed and applied to electromagnetic design problems with promising results. However, there is no universal algorithm which can be used to solve engineering design problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to improve the global search ability, a smart particle and a memory archive are adopted instead of mutation operations. Moreover, to enhance the exploration searching ability, a new set of random numbers and control parameters are introduced. Experimental results validate that the adopted control policy in this work can achieve a good balance between exploration and exploitation. Finally, the SQPSO has been tested on well-known optimization benchmark functions and implemented on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding capability of the proposed algorithm in speeding convergence compared to other algorithms.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


Sign in / Sign up

Export Citation Format

Share Document