scholarly journals VIBRATION-BASED DAMAGE DETECTION IN A BEAM STRUCTURE WITH MULTIPLE DAMAGE LOCATIONS

Aviation ◽  
2009 ◽  
Vol 13 (3) ◽  
pp. 61-71 ◽  
Author(s):  
Sandris Ručevskis ◽  
Miroslaw Wesolowski ◽  
Andris Chate

During the last two decades structural damage identification using dynamic parameters of the structure has become an important research area for civil, mechanical, and aerospace engineering communities. The basic idea of the vibration‐based damage detection methods is that a damage as a combination of different failure modes in the form of loss of local stiffness in the structure alters its dynamic characteristics, i.e., the modal frequencies, mode shapes, and modal damping values. A great variety of methods have been proposed for damage detection by using dynamic structure parameters; however, most of them require modal data of the healthy state of structure as a reference. In this paper a vibration‐based damage detection method, which uses the mode shape information determined from only the damaged state of the structure is proposed. To establish the method, two aluminium beams containing different sizes of mill‐cut damage at a single location as well as two aluminium beams containing different sizes of mill‐cut damage at multiple locations are examined. The experimental modal frequencies and the corresponding mode shapes for the first 15 flexural modes are obtained by using a scanning laser vibrometer with a PZT actuator. From the mode shapes, mode shape curvatures are obtained by using a central difference approximation. In order to exclude the influence of measurement noise on the modal data and misleading damage indices, it is proposed to use the sum of mode shape curvature squares for each mode. With the example of the beams with free‐free and clamped boundary conditions, it is shown that the mode shape curvature squares can be used to detect damage in the structures. The extent of mill‐cut damage is identified via the modal frequencies by using mixed numerical‐experimental technique. The method is based on the minimization of the discrepancy between the numerically calculated and the experimentally measured frequencies. The numerical frequencies are calculated by employing a finite‐element model for beam with introduced damage. Further, by using the response surface approach, a relationship (second‐order polynomial function) between the modal frequencies and the damage extent is constructed. The damage extent is obtained by solving the minimization problem. Santrauka Tyrimo metu buvo ieškomos sijines konstrukcijos pažeidimo frezuojant vietos, apimtis ir pažeidimo dydis pagal atlikto vibraciju eksperimento dinamines charakteristikas. Pažeidimo padetis ir apimtis buvo nustatomi pagal išlinkio formos virpesiu kvadrato dydi. Pažeidimo dydis buvo nustatomas skaitiniu‐eksperimentiniu metodu, taikant modalinius dažnius. Šio metodo efektyvumas ir patikimumas parodytas tiriant dvi aliuminio sijas, kurios buvo pažeistos frezos vienoje vietoje ir kurios buvo pažeistos skirtingose vietose.

2010 ◽  
Vol 17 (4-5) ◽  
pp. 601-610 ◽  
Author(s):  
S. Rucevskis ◽  
M. Wesolowski

During the last decades a great variety of methods have been proposed for damage detection by using the dynamic structure characteristics, however, most of them require modal data of the structure for the healthy state as a reference. In this paper the applicability of the mode shape curvature squares determined from only the damaged state of the structure for damage detection in a beam structure is studied. To establish the method, two aluminium beams containing different-size mill-cut damage at different locations are tested by using the experimentally measured modal data. The experimental modal frequencies and the corresponding mode shapes are obtained by using a scanning laser vibrometer with a PZT actuator. From the mode shapes, mode shape curvatures are obtained by using a central difference approximation. With the example of the beams with free-free and clamped boundary conditions, it is shown that the mode shape curvature squares can be used to detect damage in the structures. Further, the extent of a mill-cut damage is identified via modal frequencies by using a mixed numerical-experimental technique. The method is based on the minimization of the discrepancy between the numerically calculated and experimentally measured frequencies.


2013 ◽  
Vol 61 (1) ◽  
Author(s):  
L. D. Goh ◽  
N. Bakhary ◽  
A. A. Rahman ◽  
B. H. Ahmad

Artificial neural networks (ANNs) have received much attention in the field of vibration–based damage detection since the 1990s, due to their capability to predict damage from modal data. However, the accuracy of this method is highly dependent on the number of measurement points, especially when the mode shape is used as an indicator for damage detection. With a high number of measurement points, more information can be fed to the ANN to detect damage; therefore, more reliable results can be obtained. Nevertheless, in practice, it is uneconomical to install sensors on every part of a structure; thus the capability of ANNs to detect damage is quite limited. In this study, an ANN is applied to predict the unmeasured mode shape data based on a limited number of measured data. To demonstrate the accuracy of the proposed method, the results are compared with the Cubic Spline interpolation (CS) method. A parametric study is also conducted to investigate the sensitivity of the number of measurement points to the proposed method. The results show that the ANN provides more reliable results compared to the CS method as it is able to predict the magnitude of mode shapes at the unmeasured points with a limited number of measurement points. The application of a two–stage ANN showed results with a high potential for overcoming the issue of using a limited number of sensors in structural health monitoring.


Author(s):  
Ulrich Pabst ◽  
Peter Hagedorn

Abstract In damage detection it is common to use measured modal data and a mathematical model in connection with system identification. The part of the system undergoing the largest stiffness decrease is defined to contain damage. This approach is very sensitive to measurement errors. The measurement errors are much larger for mode shape functions than for the eigen-frequencies. The errors in the mode shapes are often of the same order of magnitude as the variations due to damage leading to poor results in damage detection. Thus, the use of the mode shape functions themselves instead of their small damage induced variations would dearly be preferable. In this paper we examine the relation between the changes in the eigenfrequencies, the local stiffness losses and the mode shape functions of the undamaged system. This relation is then utilized in a damage detection procedure.


2015 ◽  
Vol 220-221 ◽  
pp. 264-270 ◽  
Author(s):  
Sandris Rucevskis ◽  
Pavel Akishin ◽  
Andris Chate

The paper describes on-going research effort at detecting and localizing damage in plate-like structures using mode shape curvature based damage detection algorithm. The proposed damage index uses data on exclusively mode shape curvature from the damaged structure. This method was originally developed for beam-like structures. The article generalizes the method of plate-like structures characterized by two-dimensional mode shape curvature. To examine limitations of the method, several sets of simulated data are applied and the obtained results of the numerical detection of damage are validated by comparing them with the findings of the case of the experimental test. The simulated test cases include the damage of various levels of severity. In order to ascertain the sensitivity of the proposed method for noisy experimental data, numerical mode shapes are corrupted with different levels of random noise. Modal frequencies and corresponding mode shapes of an aluminium plate containing mill-cut damage are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer (SLV) for the experimental study.


Aviation ◽  
2013 ◽  
Vol 17 (2) ◽  
pp. 45-51 ◽  
Author(s):  
Sandris Ručevskis ◽  
Andris Chate

In this paper, an on-going research effort aimed at detecting and localising damage in plate-like structures by using mode shape curvature–based damage detection algorithms is described. Two alternative damage indexes are examined. The first one uses exclusively mode shape curvature data from the damaged structure. This method was originally developed for beam-like structures. In this paper, the method is generalised to plate-like structures that are characterised by two-dimensional mode shape curvature. To examine limitations of the method, several sets of simulated data are applied and damage detection results are compared to the damage identification method that requires mode shape information from both the undamaged and the damaged states of the structure. The modal frequencies and the corresponding mode shapes for the first 15 modes of a plate are obtained via finite element models. Simulated test cases include damage of various levels of severity. In order to ascertain the sensitivity of the proposed method to noisy experimental data, numerical mode shapes are corrupted with different levels of random noise.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850157 ◽  
Author(s):  
Yu-Han Wu ◽  
Xiao-Qing Zhou

Model updating methods based on structural vibration data have been developed and applied to detecting structural damages in civil engineering. Compared with the large number of elements in the entire structure of interest, the number of damaged elements which are represented by the stiffness reduction is usually small. However, the widely used [Formula: see text] regularized model updating is unable to detect the sparse feature of the damage in a structure. In this paper, the [Formula: see text] regularized model updating based on the sparse recovery theory is developed to detect structural damage. Two different criteria are considered, namely, the frequencies and the combination of frequencies and mode shapes. In addition, a one-step model updating approach is used in which the measured modal data before and after the occurrence of damage will be compared directly and an accurate analytical model is not needed. A selection method for the [Formula: see text] regularization parameter is also developed. An experimental cantilever beam is used to demonstrate the effectiveness of the proposed method. The results show that the [Formula: see text] regularization approach can be successfully used to detect the sparse damaged elements using the first six modal data, whereas the [Formula: see text] counterpart cannot. The influence of the measurement quantity on the damage detection results is also studied.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Ziemowit Dworakowski ◽  
Kajetan Dziedziech ◽  
Pawel Zdziebko ◽  
Krzysztof Mendrok

This paper presents the use of laser vibrometer measurements to detect and locate damage in a metal plate. An algorithm based on local spatial filters was selected, and for the purpose of comparison, the fault location was also determined based on the wavelet analysis of mode shapes. The research was carried out first on the created finite element model of aluminum plate, where two kinds of damage of increasing size and temperature change were simulated. After obtaining positive results, a laboratory experiment was carried out, which consisted of measuring the vibration of the aluminum plate with the laser vibrometer in undamaged condition, at increased temperatures, and with various damage scenarios. The conclusions of the laboratory experiment confirm the damage detection capabilities of the methods but question their damage localization potential.


2006 ◽  
Vol 306-308 ◽  
pp. 253-258
Author(s):  
Jianyun Chen ◽  
Zhi Hua Wang ◽  
Zai Bin Cheng ◽  
Hong Wei Ma

Damage detection using changes in global dynamic characteristics has been a hot research topic in recent years. In the present paper, based on natural frequencies and mode shapes, a numerical tudy locating and assessing damage in a circular cylindrical shell is presented. The axial position of the damage can be easily obtained by comparing the theoretical and measured frequency changes due to damage. Additional information of mode shapes is introduced to locate the exact damage position. And the damage extent can be estimated by the first order approximation method. The feasibility and practicality of the damage detection scheme are evaluated for several damage scenarios by locating and sizing damage in free-clamped shells. The results illustrate that the proposed detection scheme can confidently locate the single or multiple positions of damage. It is also observed that damage extent can be estimated with a relatively small error.


Author(s):  
Mahendran Govindasamy ◽  
Chandrasekaran Kesavan ◽  
Malhotra Santkumar

The main objective of this study is to evaluate the dynamics-based techniques for damage detection in laminated composite cantilevered rectangular plates and cylindrical shells with damages in the form of surface macro-level cracks using finite element analysis (FEA). However, the quantitative change in global vibration characteristics is not sufficiently sensitive to local structural damages especially to small size damages. Hence certain parameters called damage indicators based on mode shape curvature, which are the second derivatives of the vibration characteristics (mode shapes), are used in this study to detect the location and size of even small damages accurately in laminated composite structures. The commercial FEA package ANSYS is used for the theoretical modal analysis to generate the natural frequencies and normalized mode shapes of the intact and damaged structures. Experimental investigations are carried out on the laminated plate and shell structural elements to provide a validation of the analysis. Experimental investigations are carried out on the laminated composite (E-glass unidirectional fibers reinforced epoxy resin) cantilevered plate and shell structural elements to provide a validation of the analysis. The effectiveness of these methods is clearly demonstrated by the results obtained.


2005 ◽  
Vol 293-294 ◽  
pp. 565-574 ◽  
Author(s):  
Zhi Hua Wang ◽  
Jianyun Chen ◽  
Yonggang Zhao ◽  
Hong Wei Ma

In the present paper, the Damage Location Assurance Criterion (DLAC) is extended to locate and assess damage in a circular cylindrical shell based on natural frequencies and mode shapes. Frequency sensitivities computed from a defect-free finite element model are applied to calculate the theoretical frequency changes. The axial position of the damage can be easily obtained by comparing the theoretical and measured frequency changes due to damage. For the shell is axisymmetric, additional information of mode shapes is introduced to locate the exact damage position. The damage extent can be estimated by the first order approximation method. The feasibility and practicality of the damage detection scheme are evaluated for several damage scenarios by locating and sizing damage in the free–free, simply-supported and free-clamped shells, respectively. Results from simulation examples show that the proposed detection scheme can confidently locate the single or multiple positions of damage. It is also observed that damage extent can be estimated with a relatively small error.


Sign in / Sign up

Export Citation Format

Share Document