scholarly journals ON GENERATING DIGITAL ELEVATION MODELS FROM LIDAR DATA – RESOLUTION VERSUS ACCURACY AND TOPOGRAPHIC WETNESS INDEX INDICES IN NORTHERN PEATLANDS

2012 ◽  
Vol 38 (2) ◽  
pp. 57-69 ◽  
Author(s):  
Abdulghani Hasan ◽  
Petter Pilesjö ◽  
Andreas Persson

Global change and GHG emission modelling are dependent on accurate wetness estimations for predictions of e.g. methane emissions. This study aims to quantify how the slope, drainage area and the TWI vary with the resolution of DEMs for a flat peatland area. Six DEMs with spatial resolutions from 0.5 to 90 m were interpolated with four different search radiuses. The relationship between accuracy of the DEM and the slope was tested. The LiDAR elevation data was divided into two data sets. The number of data points facilitated an evaluation dataset with data points not more than 10 mm away from the cell centre points in the interpolation dataset. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. It showed independence of the resolution when using the same search radius. The accuracy of the estimated elevation for different slopes was tested using the 0.5 meter DEM and it showed a higher deviation from evaluation data for steep areas. The slope estimations between resolutions showed differences with values that exceeded 50%. Drainage areas were tested for three resolutions, with coinciding evaluation points. The model ability to generate drainage area at each resolution was tested by pair wise comparison of three data subsets and showed differences of more than 50% in 25% of the evaluated points. The results show that consideration of DEM resolution is a necessity for the use of slope, drainage area and TWI data in large scale modelling.

2011 ◽  
Vol 8 (3) ◽  
pp. 5497-5522 ◽  
Author(s):  
A. Hasan ◽  
P. Pilesjö ◽  
A. Persson

Abstract. It is important to study the factors affecting estimates of wetness since wetness is crucial in climate change studies. The availability of digital elevation models (DEMs) generated with high resolution data is increasing, and their use is expanding. LIDAR earth elevation data have been used to create several DEMs with different resolutions, using various interpolation parameters, in order to compare the models with collected surface data. The aim is to study the accuracy of DEMs in relation to topographical attributes such as slope and drainage area, which are normally used to estimate the wetness in terms of topographic wetness indices. Evaluation points were chosen from the high-resolution LIDAR dataset at a maximum distance of 10 mm from the cell center for each DEM resolution studied, 0.5, 1, 5, 10, 30 and 90 m. The interpolation method used was inverse distance weighting method with four search radii: 1, 2, 5 and 10 m. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. The accuracy of the estimated elevation for different slopes was tested using the DEM with 0.5 m resolution. Drainage areas were investigated at three resolutions, with coinciding evaluation points. The ability of the model to generate the drainage area at each resolution was obtained by pairwise comparison of three data subsets. The results show that the accuracy of the elevations obtained with the DEM model are the same for different resolutions, but vary with search radius. The accuracy of the values (NMAD of errors) varies from 29.7 mm to 88.9 mm, being higher for flatter areas. It was also found that the accuracy of the drainage area is highly dependent on DEM resolution. Coarse resolution yielded larger estimates of the drainage area but lower slope values. This may lead to overestimation of wetness values when using a coarse resolution DEM.


2011 ◽  
Vol 5 (1) ◽  
pp. 271-290 ◽  
Author(s):  
C. Nuth ◽  
A. Kääb

Abstract. There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter, most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system.


Author(s):  
T. Kramm ◽  
D. Hoffmeister

<p><strong>Abstract.</strong> The resolution and accuracy of digital elevation models (DEMs) have direct influence on further geoscientific computations like landform classifications and hydrologic modelling results. Thus, it is crucial to analyse the accuracy of DEMs to select the most suitable elevation model regarding aim, accuracy and scale of the study. Nowadays several worldwide DEMs are available, as well as DEMs covering regional or local extents. In this study a variety of globally available elevation models were evaluated for an area of about 190,000&amp;thinsp;km<sup>2</sup>. Data from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30&amp;thinsp;m and 90&amp;thinsp;m, Advanced Land Observing Satellite (ALOS) World 3D 30&amp;thinsp;m and TanDEM-X WorldDEM&amp;trade; &amp;ndash; 12&amp;thinsp;m and 90&amp;thinsp;m resolution were obtained. Additionally, several very high resolution DEM data were derived from stereo satellite imagery from SPOT 6/7 and Pléiades for smaller areas of about 100&amp;ndash;400&amp;thinsp;km<sup>2</sup> for each dataset. All datasets were evaluated with height points of the Geoscience Laser Altimeter System (GLAS) instrument aboard the NASA Ice, Cloud, and land Elevation (ICESat) satellite on a regional scale and with nine very high resolution elevation models from UAV-based photogrammetry on a very large scale. For all datasets the root mean square error (RMSE) and normalized median absolute deviation (NMAD) was calculated. Furthermore, the association of errors to specific terrain was conducted by assigning these errors to landforms from the topographic position index (TPI), topographic roughness index (TRI) and slope. For all datasets with a global availability the results show the highest overall accuracies for the TanDEM-X 12&amp;thinsp;m (RMSE: 2.3&amp;thinsp;m, NMAD: 0.8&amp;thinsp;m). The lowest accuracies were detected for the 30&amp;thinsp;m ASTER GDEM v3 (RMSE: 8.9&amp;thinsp;m, NMAD: 7.1&amp;thinsp;m). Depending on the landscape the accuracies are higher for all DEMs in flat landscapes and the errors rise significantly in rougher terrain. Local scale DEMs derived from stereo satellite imagery show a varying overall accuracy, mainly depending on the topography covered by the scene.</p>


2014 ◽  
Vol 8 (4) ◽  
pp. 1509-1518 ◽  
Author(s):  
I. M. Howat ◽  
A. Negrete ◽  
B. E. Smith

Abstract. As part of the Greenland Ice Mapping Project (GIMP) we have produced three geospatial data sets for the entire ice sheet and periphery. These are (1) a complete, 15 m resolution image mosaic, (2) ice-covered and ice-free terrain classification masks, also posted to 15 m resolution, and (3) a complete, altimeter-registered digital elevation model posted at 30 m. The image mosaic was created from a combination of Landsat-7 and RADARSAT-1 imagery acquired between 1999 and 2002. Each pixel in the image is stamped with the acquisition date and geo-registration error to facilitate change detection. This mosaic was then used to manually produce complete ice-covered and ice-free land classification masks. Finally, we used satellite altimetry and stereo-photogrammetric digital elevation models (DEMs) to enhance an existing DEM for Greenland, substantially improving resolution and accuracy over the ice margin and periphery.


2020 ◽  
Vol 12 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Maan Habib ◽  
Yazan Alzubi ◽  
Ahmad Malkawi ◽  
Mohammad Awwad

AbstractThere is no doubt that the tremendous development of information technology was one of the driving factors behind the great growth of surveying and geodesy science. This has spawned modern geospatial techniques for data capturing, acquisition, and visualization tools. Digital elevation model (DEM) is the 3D depiction of continuous elevation data over the Earth’s surface that is produced through many procedures such as remote sensing, photogrammetry, and land surveying. DEMs are essential for various surveying and civil engineering applications to generate topographic maps for construction projects at a scale that varies from 1:500 to 1:2,000. GIS offers a powerful tool to create a DEM with high resolution from accurate land survey measurements using interpolation methods. The aim of this research is to investigate the impact of estimation techniques on generating a reliable and accurate DEM suitable for large-scale mapping. As a part of this study, the deterministic interpolation algorithms such as ANUDEM (Topo to Raster), inverse distance weighted (IDW), and triangulated irregular network (TIN) were tested using the ArcGIS desktop for elevation data obtained from real total station readings, with different landforms to show the effect of terrain roughness, data density, and interpolation process on DEM accuracy. Furthermore, comparison and validation of each interpolator were carried out through the cross-validation method and numerous graphical representations of the DEM. Finally, the results of the investigations showed that ANUDEM and TIN models are similar and significantly better than those attained from IDW.


Author(s):  
Hiroyuki Fujisada ◽  
Minoru Urai ◽  
Akira Iwasaki

A waterbody detection technique is an essential part of digital elevation model (DEM) generation to delineate land-water boundaries and set flattened elevations. This paper describes the technical methodology for improving the initial tile-based waterbody data that are created during production of the ASTER GDEM, because without improvement such tile-based waterbody data are not suitable for incorporating into the new ASTER GDEM Version 3. Waterbodies are classified into three categories: sea, lake, and river. For sea-waterbodies, the effect of sea ice is removed to better delineate sea shorelines in high latitude areas, because sea ice prevents accurate delineation of sea shorelines. For lake-waterbodies, the major part of the processing is to set the unique elevation value for each lake using a mosaic image that covers the entire lake area. Rivers present a unique challenge, because their elevations gradually step down from upstream to downstream. Initially, visual inspection is required to separate rivers from lakes. A stepwise elevation assignment, with a step of one meter, is carried out by manual or automated methods, depending on the situation. The ASTER GWBD product consists of a global set of 1&ordm; latitude-by-1&ordm; longitude tiles containing water body attribute and elevation data files in geographic latitude and longitude coordinates and with one arc second posting. Each tile contains 3601-by-3601 data points. All improved waterbody elevation data are incorporated into the ASTER GDEM to reflect the improved results.


2012 ◽  
Vol 44 (5) ◽  
pp. 917-925 ◽  
Author(s):  
Chantal Donnelly ◽  
Jörgen Rosberg ◽  
Kristina Isberg

Underpinning all hydrological simulations is an estimate of the catchment area upstream of a point of interest. Locally, the delineation of a catchment and estimation of its area is usually done using fine scale maps and local knowledge, but for large-scale hydrological modelling, particularly continental and global scale modelling, this level of detailed data analysis is not practical. For large-scale hydrological modelling, remotely sensed and hydrologically conditioned river routing networks, such as HYDRO1k and HydroSHEDS, are often used. This study evaluates the accuracy of the accumulated upstream area in each gridpoint given by the networks. This is useful for evaluating the ability of these data sets to delineate catchments of varying scale for use in hydrological models. It is shown that the higher resolution HydroSHEDS data set gives better results than the HYDRO1k data set and that accuracy decreases with decreasing basin scale. In ungauged basins, or where other local catchment area data are not available, the validation made in this study can be used to indicate the likelihood of correctly delineating catchments of different scales using these river routing networks.


Sign in / Sign up

Export Citation Format

Share Document