registration error
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ryohei Yamauchi ◽  
Natsuki Murayoshi ◽  
Shinobu Akiyama ◽  
Norifumi Mizuno ◽  
Tomoyuki Masuda ◽  
...  

Abstract Introduction: External beam accelerated partial breast irradiation (APBI) is an alternative treatment for patients with early-stage breast cancer. The efficacy of image-guided radiotherapy (IGRT) using fiducial markers, such as gold markers or surgical clips, has been demonstrated. However, the effects of respiratory motion during a single fraction have not been reported. This study aimed to evaluate the residual image registration error of fiducial marker-based IGRT by respiratory motion and propose a suitable treatment strategy.Materials & Methods: We developed an acrylic phantom embedded with surgical clips to verify the registration error under moving conditions. The frequency of the phase difference in the respiratory cycle due to sequential acquisition was verified in a preliminary study. Fiducial marker-based IGRT was then performed in 10 scenarios. The residual registration error (RRE) was calculated on the basis of the differences in the coordinates of clips between the true position if not moved and the last position.Results: The frequencies of the phase differences in 0.0–0.99, 1.0–1.99, 2.0–2.99, 3.0–3.99, and 4.0–5.0 mm were 23%, 24%, 22%, 20%, and 11%, respectively. When assuming a clinical case, the mean RREs for all directions were within 1.0 mm, even if respiratory motion of 5 mm existed in two axes.Conclusions: For APBI with fiducial marker-based IGRT, the introduction of an image registration strategy that employs stepwise couch correction using at least three orthogonal images should be considered.


Author(s):  
M Abbass ◽  
G Gilmore ◽  
A Taha ◽  
R Chevalier ◽  
M Jach ◽  
...  

Background: Establishing spatial correspondence between subject and template images is necessary in neuroimaging research and clinical applications. A point-based set of anatomical fiducials (AFIDs) was recently developed and validated to provide quantitative measures of image registration. We applied the AFIDs protocol to magnetic resonance images (MRIs) obtained from patients with Parkinson’s Disease (PD). Methods: Two expert and three novice raters placed AFIDs on MRIs of 39 PD patients. Localization and registration errors were calculated. To investigate for unique morphometric features, pairwise distances between AFIDs were calculated and compared to 30 controls who previously had AFIDs placed. Wilcoxon rank-sum tests with Bonferroni corrections were used. Results: 6240 AFIDs were placed with a mean localization error (±SD) of 1.57mm±1.16mm and mean registration error of 3.34mm±1.94mm. Out of the 496 pairwise distances, 40 were statistically significant (p<0.05/496). PD patients had a decreased pairwise distance between the left temporal horn, brainstem and pineal gland. Conclusions: AFIDs can be successfully applied with millimetric accuracy in a clinical setting and utilized to provide localized and quantitative measures of registration error. AFIDs provide clinicians and researchers with a common, open framework for quality control and validation of spatial correspondence, facilitating accurate aggregation of imaging datasets and comparisons between various neurological conditions.


2021 ◽  
pp. 1-10
Author(s):  
Faith C. Robertson ◽  
Raahil M. Sha ◽  
Jose M. Amich ◽  
Walid Ibn Essayed ◽  
Avinash Lal ◽  
...  

OBJECTIVE A major obstacle to improving bedside neurosurgical procedure safety and accuracy with image guidance technologies is the lack of a rapidly deployable, real-time registration and tracking system for a moving patient. This deficiency explains the persistence of freehand placement of external ventricular drains, which has an inherent risk of inaccurate positioning, multiple passes, tract hemorrhage, and injury to adjacent brain parenchyma. Here, the authors introduce and validate a novel image registration and real-time tracking system for frameless stereotactic neuronavigation and catheter placement in the nonimmobilized patient. METHODS Computer vision technology was used to develop an algorithm that performed near-continuous, automatic, and marker-less image registration. The program fuses a subject’s preprocedure CT scans to live 3D camera images (Snap-Surface), and patient movement is incorporated by artificial intelligence–driven recalibration (Real-Track). The surface registration error (SRE) and target registration error (TRE) were calculated for 5 cadaveric heads that underwent serial movements (fast and slow velocity roll, pitch, and yaw motions) and several test conditions, such as surgical draping with limited anatomical exposure and differential subject lighting. Six catheters were placed in each cadaveric head (30 total placements) with a simulated sterile technique. Postprocedure CT scans allowed comparison of planned and actual catheter positions for user error calculation. RESULTS Registration was successful for all 5 cadaveric specimens, with an overall mean (± standard deviation) SRE of 0.429 ± 0.108 mm for the catheter placements. Accuracy of TRE was maintained under 1.2 mm throughout specimen movements of low and high velocities of roll, pitch, and yaw, with the slowest recalibration time of 0.23 seconds. There were no statistically significant differences in SRE when the specimens were draped or fully undraped (p = 0.336). Performing registration in a bright versus a dimly lit environment had no statistically significant effect on SRE (p = 0.742 and 0.859, respectively). For the catheter placements, mean TRE was 0.862 ± 0.322 mm and mean user error (difference between target and actual catheter tip) was 1.674 ± 1.195 mm. CONCLUSIONS This computer vision–based registration system provided real-time tracking of cadaveric heads with a recalibration time of less than one-quarter of a second with submillimetric accuracy and enabled catheter placements with millimetric accuracy. Using this approach to guide bedside ventriculostomy could reduce complications, improve safety, and be extrapolated to other frameless stereotactic applications in awake, nonimmobilized patients.


2021 ◽  
Author(s):  
Guillaume Potier ◽  
Frederic Lavancier ◽  
Stephan Kunne ◽  
Perrine Paul-Gilloteaux

2021 ◽  
Vol 15 ◽  
Author(s):  
Fuzhi Cao ◽  
Nan An ◽  
Weinan Xu ◽  
Wenli Wang ◽  
Yanfei Yang ◽  
...  

Magnetoencephalography (MEG) can non-invasively measure the electromagnetic activity of the brain. A new type of MEG, on-scalp MEG, has attracted the attention of researchers recently. Compared to the conventional SQUID-MEG, on-scalp MEG constructed with optically pumped magnetometers is wearable and has a high signal-to-noise ratio. While the co-registration between MEG and magnetic resonance imaging (MRI) significantly influences the source localization accuracy, co-registration error requires assessment, and quantification. Recent studies have evaluated the co-registration error of on-scalp MEG mainly based on the surface fit error or the repeatability error of different measurements, which do not reflect the true co-registration error. In this study, a three-dimensional-printed reference phantom was constructed to provide the ground truth of MEG sensor locations and orientations relative to MRI. The co-registration performances of commonly used three devices—electromagnetic digitization system, structured-light scanner, and laser scanner—were compared and quantified by the indices of final co-registration errors in the reference phantom and human experiments. Furthermore, the influence of the co-registration error on the performance of source localization was analyzed via simulations. The laser scanner had the best co-registration accuracy (rotation error of 0.23° and translation error of 0.76 mm based on the phantom experiment), whereas the structured-light scanner had the best cost performance. The results of this study provide recommendations and precautions for researchers regarding selecting and using an appropriate device for the co-registration of on-scalp MEG and MRI.


2021 ◽  
Vol 2 (01) ◽  
pp. 13-20
Author(s):  
Jesus Balado Frias ◽  
Ana Sánchez-Rodríguez

The digitisation of heritage is being rapidly realised in many parts of the world thanks to LiDAR technology. In addition to the simple digital preservation of heritage, 3D acquisition makes it possible to monitor the structural condition and assess possible damage. This paper presents a method for modelling the lost volume of a heritage bridge. The selected case study is the Fillaboa bridge, in Salvaterra de Miño, Spain, which has two cutwaters with the same cutting angle, one of which is damaged and has a stone loss. The bridge was acquired with a Terrestrial Laser Scanner. The method consists of the following processes. First, the walls of the whole cutwater are segmented and aligned by Iterative Closest Point algorithm over the damaged cutwater. Second, the distance between the two point clouds is calculated and the damaged area is delimited in both point clouds. And third, the alpha shape algorithm is applied to model the point cloud of the damaged area to a polygon. By searching for the optimal alpha radius, the polygon that best fits the damaged volume is generated. The proposed method also allows digital reconstruction of the damaged area, although it is sensitive to acquisition problems, which require manual interventions in the processing. The accuracy of the method is mainly dependent on the acquired point cloud registration (with an RMS error of 60mm) and the ICP registration error (31mm). Its use is limited to the existence of two geometries that allow superposition: one in good condition and one damaged to compare.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4085
Author(s):  
Marek Wodzinski ◽  
Izabela Ciepiela ◽  
Tomasz Kuszewski ◽  
Piotr Kedzierawski ◽  
Andrzej Skalski

Breast-conserving surgery requires supportive radiotherapy to prevent cancer recurrence. However, the task of localizing the tumor bed to be irradiated is not trivial. The automatic image registration could significantly aid the tumor bed localization and lower the radiation dose delivered to the surrounding healthy tissues. This study proposes a novel image registration method dedicated to breast tumor bed localization addressing the problem of missing data due to tumor resection that may be applied to real-time radiotherapy planning. We propose a deep learning-based nonrigid image registration method based on a modified U-Net architecture. The algorithm works simultaneously on several image resolutions to handle large deformations. Moreover, we propose a dedicated volume penalty that introduces the medical knowledge about tumor resection into the registration process. The proposed method may be useful for improving real-time radiation therapy planning after the tumor resection and, thus, lower the surrounding healthy tissues’ irradiation. The data used in this study consist of 30 computed tomography scans acquired in patients with diagnosed breast cancer, before and after tumor surgery. The method is evaluated using the target registration error between manually annotated landmarks, the ratio of tumor volume, and the subjective visual assessment. We compare the proposed method to several other approaches and show that both the multilevel approach and the volume regularization improve the registration results. The mean target registration error is below 6.5 mm, and the relative volume ratio is close to zero. The registration time below 1 s enables the real-time processing. These results show improvements compared to the classical, iterative methods or other learning-based approaches that do not introduce the knowledge about tumor resection into the registration process. In future research, we plan to propose a method dedicated to automatic localization of missing regions that may be used to automatically segment tumors in the source image and scars in the target image.


2021 ◽  
Author(s):  
Stacy-Lee Annis

The relationship between dose mapped using two mapping methods (energy mapping method and voxel warping method) and registration error was examined. The correlation between the difference in doses mapped using these methods, defined as dose mapping difference (DMD), and landmark distance to agreement for a realistic lung patient plan using registrations of varying accuracy was examined. Results showed no correlation between DMD and landmark error. Further investigation on simple dose mapping geometries revealed a correlation of DMD with fractional volume (FVC) change induced by registration errors. A formula for DMD as a function of FVC was derived. Results of this formula agreed with simulated values of DMD with percentage differences less than 3.5% in regions of uniform dose. However, no agreement was found in regions containing a dose gradient. Further work is required in order to extend this formula to regions of dose gradients and scenarios that emulate realistic deformations.


Sign in / Sign up

Export Citation Format

Share Document