scholarly journals ON SINGULAR SOLUTIONS OF THE STATIONARY NAVIER-STOKES SYSTEM IN POWER CUSP DOMAINS

2021 ◽  
Vol 26 (4) ◽  
pp. 651-668
Author(s):  
Konstantinas Pileckas ◽  
Alicija Raciene

The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved.

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2022
Author(s):  
Kristina Kaulakytė ◽  
Konstantinas Pileckas

The boundary value problem for the steady Navier–Stokes system is considered in a 2D multiply-connected bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with nonzero flow rates over connected components of the boundary is studied. It is also supposed that there is a source/sink in O. In this case the solution necessarily has an infinite Dirichlet integral. The existence of a solution to this problem is proved assuming that the flow rates are “sufficiently small” . This condition does not require the norm of the boundary data to be small. The solution is constructed as the sum of a function with the finite Dirichlet integral and a singular part coinciding with the asymptotic decomposition near the cusp point.


2021 ◽  
Vol 10 (1) ◽  
pp. 982-1010
Author(s):  
Konstantin Pileckas ◽  
Alicija Raciene

Abstract The initial boundary value problem for the non-stationary Navier-Stokes equations is studied in 2D bounded domain with a power cusp singular point O on the boundary. The case of the boundary value with a nonzero flow rate is considered. In this case there is a source/sink in O and the solution necessary has infinite energy integral. In the first part of the paper the formal asymptotic expansion of the solution near the singular point is constructed. The justification of the asymptotic expansion and the existence of a solution are proved in the second part of the paper.


1998 ◽  
Vol 08 (04) ◽  
pp. 657-684 ◽  
Author(s):  
M. FEISTAUER ◽  
C. SCHWAB

The use of the complete Navier–Stokes system in an unbounded domain is not always convenient in computations and, therefore, the Navier–Stokes problem is often truncated to a bounded domain. In this paper we simulate the interaction between the flow in this domain and the exterior flow with the aid of a coupled problem. We propose in particular a linear approximation of the exterior flow (here the Stokes flow or potential flow) coupled with the interior Navier–Stokes problem via suitable transmission conditions on the artificial interface between the interior and exterior domains. Our choice of the transmission conditions ensures the existence of a solution of the coupled problem, also for large data.


2012 ◽  
Vol 53 ◽  
Author(s):  
Kristina Kaulakytė

In this paper the stationary Navier–Stokes system with non-homogeneous boundary condition is studied in domain which consists of two connected layers. The extension of the boundary value, which reduces the non-homogeneous boundary problem to the homogeneous one, is constructed in this paper.


Sign in / Sign up

Export Citation Format

Share Document