scholarly journals ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

2016 ◽  
Vol 822 (1) ◽  
pp. 56 ◽  
Author(s):  
Eyal Gavish ◽  
David Eichler
2019 ◽  
Vol 209 ◽  
pp. 01018
Author(s):  
Roberto Aloisio

The physics of Ultra High Energy Cosmic Rays will be reviewed, discussing the latest experimental results and theoretical models aiming at explaining the observations in terms of spectra, mass composition and possible sources. It will be also discussed the emission of secondary particles such as neutrinos and gamma rays produced by the interaction of Ultra High Energy Cosmic Rays with astrophysical photon backgrounds. The content of the present proceeding paper is mainly based on the review papers [1, 2].


2010 ◽  
Vol 25 (18) ◽  
pp. 1467-1481 ◽  
Author(s):  
TODOR STANEV

We introduce the highest energy cosmic rays and briefly review the powerful astrophysical objects where they could be accelerated. We then introduce the interactions of different cosmic ray particles with the photon fields of the Universe and the formation of the cosmic ray spectra observed at Earth. The last topic is the production of secondary gamma rays and neutrinos in the interactions of the ultrahigh energy cosmic rays.


2019 ◽  
Vol 207 ◽  
pp. 03005
Author(s):  
D. Kostunin

The present work discusses the development of the radio technique for detection of ultra-high energy air-showers induced by cosmic radiation, and the prospects of its application in the future multi-messenger activities, particularly for detection of ultra-high energy cosmic rays, gamma rays and neutrinos. It gives an overview of the results achieved by the modern digital radio arrays, as well as discuss present challenges and future prospects.


2019 ◽  
Vol 210 ◽  
pp. 06007
Author(s):  
Olivier Martineau-Huynh

The Giant Array for Neutrino Detection (GRAND) is a proposal for a giant observatory of ultra-high energy cosmic particles (neutrinos, cosmic rays and gamma rays). It will be composed of twenty subarrays of 10 000 antennas each, totaling a detection area of 200 000 km2. GRAND will reach unprecedented sensitivity to neutrinos allowing to detect cosmogenic neutrinos while its sub-degree angular resolution will also make it possible to hunt for point sources and possibly start neutrino astronomy. Combined with its gigantic exposure to ultra-high energy cosmic rays and gamma rays, GRAND will be a powerful tool to solve the century-long mistery of the nature and origin of the particles with highest energy in the Universe. On the path to GRAND, the GRANDProto300 experiment will be deployed in 2020 over a total area of 200 km2. It primarly aims at validating the detection concept of GRAND, but also proposes a rich science program centered on a precise and complete measurement of the air showers initiated by cosmic rays with energies between 1016.5 and 1018 eV, a range where we expect to observe the transition between the Galactic and extra-galactic origin of cosmic rays.


Pramana ◽  
2004 ◽  
Vol 62 (3) ◽  
pp. 789-792
Author(s):  
Pijushpani Bhattacharjee ◽  
Nayantara Gupta

2003 ◽  
Vol 586 (2) ◽  
pp. 1232-1237 ◽  
Author(s):  
C. W. Akerlof ◽  
S. Biller ◽  
P. Boyle ◽  
J. Buckley ◽  
D. A. Carter‐Lewis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document