scholarly journals The ANTARES Astronomical Time-domain Event Broker

2021 ◽  
Vol 161 (3) ◽  
pp. 107
Author(s):  
Thomas Matheson ◽  
Carl Stubens ◽  
Nicholas Wolf ◽  
Chien-Hsiu Lee ◽  
Gautham Narayan ◽  
...  
2011 ◽  
Vol 7 (S285) ◽  
pp. 221-226
Author(s):  
Rob Seaman ◽  
Roy Williams ◽  
Matthew Graham ◽  
Tara Murphy

AbstractJust as the astronomical “Time Domain” is a catch-phrase for a diverse group of different science objectives involving time-varying phenomena in all astrophysical régimes from the solar system to cosmological scales, so the “Virtual Observatory” is a complex set of community-wide activities from archives to astroinformatics. This workshop touched on some aspects of adapting and developing those semantic and network technologies in order to address transient and time-domain research challenges. It discussed the VOEvent format for representing alerts and reports on celestial transient events, the SkyAlert and ATELstream facilities for distributing these alerts, and the IVOA time-series protocol and time-series tools provided by the VAO. Those tools and infrastructure are available today to address the real-world needs of astronomers.


2019 ◽  
Vol 491 (1) ◽  
pp. 596-614 ◽  
Author(s):  
David F Chernoff ◽  
Ariel Goobar ◽  
Janina J Renk

ABSTRACT The existence of cosmic superstrings may be probed by astronomical time domain surveys. When crossing the line of sight to point-like sources, strings produce a distinctive microlensing signature. We consider two avenues to hunt for a relic population of superstring loops: frequent monitoring of (1) stars in Andromeda, lensed by loops in the haloes of the Milky-Way and Andromeda and (2) supernovae at cosmological distances, lensed by loops in the intergalactic medium. We assess the potential of such experiments to detect and/or constrain strings with a range of tensions, 10−15 ≲ Gμ/c2 ≲ 10−6. The practical sensitivity is tied to cadence of observations which we explore in detail. We forecast that high-cadence monitoring of ∼105 stars on the far side of Andromeda over a year-long period will detect microlensing events if Gμ/c2 ∼ 10−13, while ∼106 stars will detect events if 10−13.5 < Gμ/c2 < 10−11.5; the upper and lower bounds of the accessible tension range continue to expand as the number of stars rises. We also analyse the ability to reject models in the absence of fluctuations. While challenging, these studies are within reach of forthcoming time-domain surveys. Supernova observations can hypothetically constrain models with 10−12 < Gμ/c2 < 10−6 without any optimization of the survey cadence. However, the event rate forecast suggests it will be difficult to reject models of interest. As a demonstration, we use observations from the Pantheon Type Ia supernova cosmology data set to place modest constraints on the number density of cosmic superstrings in a poorly tested region of the parameter space.


1993 ◽  
Vol 3 (3) ◽  
pp. 581-591 ◽  
Author(s):  
Wojciech Gwarek ◽  
Malgorzata Celuch-Marcysiak

1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document