scholarly journals Period Ratio Sculpting near Second-order Mean-motion Resonances

2021 ◽  
Vol 163 (1) ◽  
pp. 13
Author(s):  
Nora Bailey ◽  
Gregory Gilbert ◽  
Daniel Fabrycky

Abstract Second-order mean-motion resonances lead to an interesting phenomenon in the sculpting of the period-ratio distribution, due to their shape and width in period-ratio/eccentricity space. As the osculating periods librate in resonance, the time-averaged period ratio approaches the exact commensurability. The width of second-order resonances increases with increasing eccentricity, and thus more eccentric systems have a stronger peak at commensurability when averaged over sufficient time. The libration period is short enough that this time-averaging behavior is expected to appear on the timescale of the Kepler mission. Using N-body integrations of simulated planet pairs near the 5:3 and 3:1 mean-motion resonances, we investigate the eccentricity distribution consistent with the planet pairs observed by Kepler. This analysis, an approach independent from previous studies, shows no statistically significant peak at the 3:1 resonance and a small peak at the 5:3 resonance, placing an upper limit on the Rayleigh scale parameter, σ, of the eccentricity of the observed Kepler planets at σ = 0.245 (3:1) and σ = 0.095 (5:3) at 95% confidence, consistent with previous results from other methods.

2015 ◽  
Vol 11 (A29A) ◽  
pp. 30-37
Author(s):  
Sourav Chatterjee ◽  
Seth O. Krantzler ◽  
Eric B. Ford

AbstractAn intriguing trend among it Kepler's multi-planet systems is an overabundance of planet pairs with period ratios just wide of mean motion resonances (MMR) and a dearth of systems just narrow of them. In a recently published paper Chatterjee & Ford (2015; henceforth CF15) has proposed that gas-disk migration traps planets in a MMR. After gas dispersal, orbits of these trapped planets are altered through interaction with a residual planetesimal disk. They found that for massive enough disks planet-planetesimal disk interactions can break resonances and naturally create moderate to large positive offsets from the initial period ratio for large ranges of planetesimal disk and planet properties. Divergence from resonance only happens if the mass of planetesimals that interact with the planets is at least a few percent of the total planet mass. This threshold, above which resonances are broken and the offset from resonances can grow, naturally explains why the asymmetric large offsets were not seen in more massive planet pairs found via past radial velocity surveys. In this article we will highlight some of the key findings of CF15. In addition, we report preliminary results from an extension of this study, that investigates the effects of planet-planetesimal disk interactions on initially non-resonant planet pairs. We find that planetesimal scattering typically increases period ratios of non-resonant planets. If the initial period ratios are below and in proximity of a resonance, under certain conditions, this increment in period ratios can create a deficit of systems with period ratios just below the exact integer corresponding to the MMR and an excess just above. From an initially uniform distribution of period ratios just below a 2:1 MMR, planetesimal interactions can create an asymmetric distribution across this MMR similar to what is observed for the kepler planet pairs.


2009 ◽  
Vol 103 (4) ◽  
pp. 343-364 ◽  
Author(s):  
Pavol Pástor ◽  
Jozef Klačka ◽  
Ladislav Kómar

2018 ◽  
pp. 2693-2711
Author(s):  
Alexandre C. M. Correia ◽  
Jean-Baptiste Delisle ◽  
Jacques Laskar

1992 ◽  
Vol 152 ◽  
pp. 255-268 ◽  
Author(s):  
A. Carusi ◽  
G.B. Valsecchi

The gravitational processes affecting the dynamics of comets are reviewed. At great distances from the Sun the motion of comets is primarily affected by the vertical component of the galactic field, as well as by encounters with stars and giant molecular clouds. When comets move in the region of the planets, encounters with these can strongly affect their motion. A good fraction of all periodic comets spend some time in temporary libration about mean motion resonances with Jupiter; some comets can be captured by this planet as temporary satellites. Finally, there is a small number of objects with orbital characteristics quite different from those of all other short-period comets.


Icarus ◽  
2000 ◽  
Vol 148 (1) ◽  
pp. 282-300 ◽  
Author(s):  
D. Nesvorný ◽  
F. Roig

2020 ◽  
Vol 640 ◽  
pp. L15
Author(s):  
Ayano Nakajima ◽  
Shigeru Ida ◽  
Yota Ishigaki

Context. Saturn’s mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every-other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of a recent model of satellite formation from a hypothetical ancient massive ring, adjacent pairs must pass first-order mean-motion resonances without being trapped. Aims. The trapping could be avoided by fast orbital migration and/or excitation of the satellite’s eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. Methods. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used N ∼ 105 particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. Results. Dense short-wavelength wake structure is created by the disk self-gravity and a few global spiral arms are induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism, but not as a driver for the orbital evolution. Conclusions. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than was predicted with the spiral arm torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturn’s mid-sized satellites.


2021 ◽  
Vol 161 (2) ◽  
pp. 77
Author(s):  
Su Wang ◽  
D. N. C. Lin ◽  
Xiaochen Zheng ◽  
Jianghui Ji

Sign in / Sign up

Export Citation Format

Share Document