scholarly journals Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

2017 ◽  
Vol 842 (1) ◽  
pp. 45 ◽  
Author(s):  
K. Kaneda ◽  
H. Misawa ◽  
K. Iwai ◽  
F. Tsuchiya ◽  
T. Obara ◽  
...  
1974 ◽  
Vol 2 (5) ◽  
pp. 258-261 ◽  
Author(s):  
R. D. Robinson

Any theory dealing with type IV solar radio bursts must explain the observed evolution of their brightness temperature and polarization. The behaviour of isolated, moving type IV sources is characterized by a long period of constant and low polarization during the major part of their lifetime, followed by a substantial increase in the degree of circular polarization during the declining phase. This behaviour puts severe constraints on and gives valuable clues as to the evolution of the physical conditions within the source.


Solar Physics ◽  
2021 ◽  
Vol 296 (2) ◽  
Author(s):  
Maoshui Lv ◽  
Yao Chen ◽  
V. Vasanth ◽  
Mohd Shazwan Radzi ◽  
Zamri Zainal Abidin ◽  
...  

1989 ◽  
Vol 104 (2) ◽  
pp. 185-189
Author(s):  
N. Copalswamy ◽  
M. R. Kundu

AbstractWe present recent results from meter-decameter imaging of several classes of solar radio bursts: Preflare activity in the form of type III bursts, correlated type IIIs from distant sources, and type II and moving type IV bursts associated with flares and CMEs.


2021 ◽  
Author(s):  
Theogene Ndacyayisenga ◽  
Ange Cynthia Umuhire ◽  
Jean Uwamahoro ◽  
Christian Monstein

Abstract. This article summarizes the results of an analysis of solar radio bursts detected by the e-Compound Astronomical Low cost Low-frequency Instrument for spectroscopy and Transportable Observatory (e-CALLISTO) spectrometer hosted by the University of Rwanda, College of Education. The data analysed were detected during the first year (2014–2015) of the instrument operation. The Atmospheric Imaging Assembly (AIA) images on board the Solar Dynamics Observatory (SDO) were used to check the location of propagating waves associated with type III radio bursts detected without solar flares. Using quick plots provided by the e-CALLISTO website, we found a total of 202 solar radio bursts detected by the CALLISTO station located in Rwanda. Among them, 5 are type IIs, 175 are type IIIs, and 22 type IVs radio bursts. It is found that all analysed type IIs and ∼37 % of type III bursts are associated with impulsive solar flares while Type IV radio bursts are poorly associated with flares. Furthermore, all of the analysed type II bursts are associated with CMEs which is consistent with the previous studies, and ∼44 % of type IIIs show association with CMEs. On the other hand it is observed that the majority of type IV radio bursts are believed to be originated from CME-driven shocks. Findings from this study confirms that solar radio bursts (SRBs) from ground observation and analysis constitute a clue to diagnose the space weather phenomena such as solar flare and CMEs and to some extent, they may serve as the advance warning of the related severe space weather hazards.


Sign in / Sign up

Export Citation Format

Share Document