coronal shock
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 8)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 34 ◽  
pp. 76-80
Author(s):  
E. A. Isaeva

The relationship between SCR and CME and with fading of the continuum of noise storms and typeIV radio bursts in the decameter range is investigated. It was shown earlier that about 60% of CMEs associated with solar proton events are accompanied by deep fading of the solar radio emission in the decameter range, which coin-cides in time with CME registration. It has also been shown that fading is characterized by fading depth, the frequency bandwidth in which the fading occurs, as well as the duration of the fading and the frequency at which the maximum fading depth is observed. Further detailed studies have shown that for proton events accompanied by fading of the solar radio emission in the decameter range, the relationship between the intensity of the SCR proton flux and the CME velocity is much worse than for events without fading of the solar radio emission in the decameter range. However, it was foundthat for such events, the relationship between the flux of SCR protons and the CME velocity significantly increases if we take into account the fading depth of the solar radio emission in the decameter range.Earlier in (Isaeva, 2019), the results of a study of the relationship between the intensity of fading of the continuum of noise storms with the parameters of X-ray bursts, with the CME velocity and the velocity of coronal shock waves, as well as with the intensity of the SCR proton flux were presented. This paper presents the results of studying the relationship between the intensity of the SCR proton flux withthe parameters of type II and IV radio bursts, as well as with the CME velocity and with the velocity of coronal shock waves, depending on the intensity of fading of the solar radio emission in the decameter range at a frequency of 27 MHz. The frequency of 27 MHz was chosen because in the region of this frequency the maximum fading depth of the solar radio emission in the decameter range is observed.  


Author(s):  
Karl-Ludwig Klein

Solar energetic particle (SEP) events are commonly separated in two categories: numerous “impulsive” events of relatively short duration, and a few “gradual” events, where SEP-intensities may stay enhanced over several days at energies up to several tens of MeV. In some gradual events the SEP spectrum extends to relativistic energies (>1 GeV), over shorter durations. The two categories are strongly related to an idea developed in the 1960s based on radio observations: Type III bursts, which were addressed in a companion chapter, outline impulsive acceleration of electrons to subrelativistic energies, while the large and the relativistic SEP events were ascribed to a second acceleration process. At radio wavelengths, typical counterparts were bursts emitted by electrons accelerated at coronal shock waves (type II bursts) and by electron populations in large-scale closed coronal structures (type IV bursts). Both burst types are related to coronal mass ejections (CMEs). Type II bursts from metric to kilometric wavelengths tend to accompany large SEP events, which is widely considered as a confirmation that CME-driven shocks accelerate the SEPs. But type II bursts, especially those related to SEP events, are most often accompanied by type IV bursts, where the electrons are rather accelerated in the wake of the CME. Individual event studies suggest that although the CME shock is the most plausible accelerator of SEPs up to some yet unknown limiting energy, the relativistic SEP events show time structure that rather points to coronal acceleration related to type IV bursts. This chapter addresses the question what type II bursts tell us about coronal shock waves and how type II and type IV radio bursts are related with relativistic proton signatures as seen by particle detectors on the Earth and by their gamma-ray emission in the solar atmosphere, focusing on two relativistic SEP events, on 2005 Jan 20 and 2017 Sep 10. The importance of radio emissions as a complement to the upcoming SEP observations from close to the Sun is underlined.


2021 ◽  
Author(s):  
Ryun Young Kwon

<p>We present a novel method to derive the shock density compression ratio of coronal shock waves that are occasionally observed as halo coronal mass ejections (CMEs). Our method uses the three-dimensional (3-D) geometry and enables us to access the reliable shock density compression ratio. We show the 3-D properties of coronal shock waves seen from multiple vantage point observations, i.e., geometry, kinematics, and compression ratio (Mach number). The significant findings are as follows: (1) Halo CMEs are the manifestation of spherically shaped fast-mode waves/shocks, rather than a matter of the projection of expanding flux ropes. The footprints of halo CMEs on the coronal base are the so-called EIT/EUV waves. (2) These spherical fronts arise from a driven shock (bow- or piston-type) close to the CME nose, and it is gradually becoming a freely propagating (decaying) fast-mode shock wave at the flank. (3) The shock density compressions peak around the CME nose and decrease at larger position angles (flank). (4) Finally, the supercritical region extends over a large area of the shock and lasts longer than past reports.  These results offer a simple unified picture of the different manifestations for CME-associated (shock) waves, such as EUV waves and SEP events observed in various regimes and heliocentric distances. We conclude that CME shocks can accelerate energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere.</p>


2020 ◽  
Vol 893 (1) ◽  
pp. 76
Author(s):  
Athanasios Kouloumvakos ◽  
Alexis P. Rouillard ◽  
Gerald H. Share ◽  
Illya Plotnikov ◽  
Ronald Murphy ◽  
...  

2019 ◽  
Vol 876 (1) ◽  
pp. 80 ◽  
Author(s):  
Athanasios Kouloumvakos ◽  
Alexis P. Rouillard ◽  
Yihong Wu ◽  
Rami Vainio ◽  
Angelos Vourlidas ◽  
...  

2018 ◽  
Vol 615 ◽  
pp. A89 ◽  
Author(s):  
P. Zucca ◽  
D. E. Morosan ◽  
A. P. Rouillard ◽  
R. Fallows ◽  
P. T. Gallagher ◽  
...  

Context. Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with coronal mass ejections (CMEs) and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20–90 MHz) is now possible with the Low Frequency Array (LOFAR), opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. Aims. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon. Methods. Thetype II shock source-positions and spectra were obtained using 91 simultaneous tied-array beams of LOFAR, and the CME was observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) and by the COR2A coronagraph of the SECCHI instruments on board the Solar Terrestrial Relation Observatory(STEREO). The 3D structure was inferred using triangulation of the coronographic observations. Coronal magnetic fields were obtained from a 3D magnetohydrodynamics (MHD) polytropic model using the photospheric fields measured by the Heliospheric Imager (HMI) on board the Solar Dynamic Observatory (SDO) as lower boundary. Results. The type II radio source of the coronal shock observed between 50 and 70 MHz was found to be located at the expanding flank of the CME, where the shock geometry is quasi-perpendicular with θBn ~ 70°. The type II radio burst showed first and second harmonic emission; the second harmonic source was cospatial with the first harmonic source to within the observational uncertainty. This suggests that radio wave propagation does not alter the apparent location of the harmonic source. The sources of the two split bands were also found to be cospatial within the observational uncertainty, in agreement with the interpretation that split bands are simultaneous radio emission from upstream and downstream of the shock front. The fast magnetosonic Mach number derived from this interpretation was found to lie in the range 1.3–1.5. The fast magnetosonic Mach numbers derived from modelling the CME and the coronal magnetic field around the type II source were found to lie in the range 1.4–1.6.


2018 ◽  
Vol 614 ◽  
pp. A139 ◽  
Author(s):  
A. N. Afanasyev ◽  
A. N. Zhukov

Context. Global coronal waves associated with solar eruptions (the so-called EIT waves) often encounter coronal holes and solar active regions and interact with these magnetic structures. This interaction leads to a number of observed effects such as wave reflection and transmission. Aims. We consider the propagation of a large-scale coronal shock wave and its interaction with large-scale non-uniformities of the background magnetic field and plasma parameters. Methods. Using the Lare2d code, we performed 2.5-dimensional simulations of the interaction of a large-scale single-pulse fast-mode magnetohydrodynamic shock wave of weak-to-moderate intensity with the region of enhanced Alfvén speed as well as with that of reduced Alfvén speed. We analysed simple models of non-uniformity and the surrounding plasma to understand the basic effects in wave propagation. Results. We found the reflected waves of plasma compression and rarefaction, transmitted waves that propagate behind or ahead of the main part of the wave, depending on properties of the plasma non-uniformity, and secondary wave fronts. The obtained results are important to the correct interpretation of the global coronal wave propagation in the solar corona, understanding of theoretical aspects of the interaction of large-scale coronal shock waves with large-scale coronal magnetic structures, and diagnostics of coronal plasma parameters.


Sign in / Sign up

Export Citation Format

Share Document