scholarly journals Investigating the Stellar Mass Growth Histories of Satellite Galaxies as a Function of Infall Time Using Phase-space

2019 ◽  
Vol 876 (2) ◽  
pp. 145 ◽  
Author(s):  
Rory Smith ◽  
Camilla Pacifici ◽  
Anna Pasquali ◽  
Paula Calderón-Castillo
2020 ◽  
Vol 498 (2) ◽  
pp. 2114-2137 ◽  
Author(s):  
Nicholas A Henden ◽  
Ewald Puchwein ◽  
Debora Sijacki

ABSTRACT We study the gas and stellar mass content of galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations, including the evolution of their central brightest cluster galaxies (BCGs), satellite galaxies, and intracluster light (ICL). The total gas and stellar mass of fable clusters are in good agreement with observations and show negligible redshift evolution at fixed halo mass for $M_{500} \gtrsim 3 \times 10^{14} \, \mathrm{M}_{\odot }$ at z ≲ 1, in line with recent findings from Sunyaev–Zel’dovich (SZ)-selected cluster samples. Importantly, the simulations predict significant redshift evolution in these quantities in the low-mass ($M_{500} \sim 10^{14} \, \mathrm{M}_{\odot }$) regime, which will be testable with upcoming SZ surveys such as SPT-3G. Whilst the stellar masses of fable BCGs are in reasonable agreement with observations, the total stellar mass in satellite galaxies is lower than observed and the total mass in ICL is somewhat higher. This may be caused by enhanced tidal stripping of satellite galaxies due to their large sizes. BCGs are characterized by moderate stellar mass growth at z < 1 coincident with a late-time development of the ICL. The level of BCG mass growth is in good agreement with recent observations; however, we caution that the inferred growth depends sensitively on the mass definition. We further show that in situ star formation contributes more than half the mass of a BCG over its lifetime, the bulk of which is gained at z > 1 where star formation rates are highest. The stellar mass profiles of the BCG+ICL component are similar to observed profiles out to ∼100 kpc at z ≈ 0 and follow a close to power law shape out to several hundred kpc. We further demonstrate that the inferred size growth of BCGs can be severely biased by the choice of parametric model and the outer radius of the fit.


2020 ◽  
Vol 500 (4) ◽  
pp. 4469-4490 ◽  
Author(s):  
James Trussler ◽  
Roberto Maiolino ◽  
Claudia Maraston ◽  
Yingjie Peng ◽  
Daniel Thomas ◽  
...  

ABSTRACT We investigate the environmental dependence of the stellar populations of galaxies in Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Echoing earlier works, we find that satellites are both more metal-rich (<0.1 dex) and older (<2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley, and passive galaxies, we find that the true environmental dependence of both stellar metallicity (<0.03 dex) and age (<0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley, and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (<0.05 and <0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (‘strangulation’) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass–stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (∼0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.


2019 ◽  
Vol 489 (1) ◽  
pp. 459-469 ◽  
Author(s):  
Tereasa G Brainerd ◽  
Masaya Yamamoto

ABSTRACT We investigate the locations of satellite galaxies in the z = 0 redshift slice of the hydrodynamical Illustris-1 simulation. As expected from previous work, the satellites are distributed anisotropically in the plane of the sky, with a preference for being located near the major axes of their hosts. Due to misalignment of mass and light within the hosts, the degree of anisotropy is considerably less when satellite locations are measured with respect to the hosts’ stellar surface mass density than when they are measured with respect to the hosts’ dark matter surface mass density. When measured with respect to the hosts’ dark matter surface mass density, the mean satellite location depends strongly on host stellar mass and luminosity, with the satellites of the faintest, least massive hosts showing the greatest anisotropy. When measured with respect to the hosts’ stellar surface mass density, the mean satellite location is essentially independent of host stellar mass and luminosity. In addition, the satellite locations are largely insensitive to the amount of stellar mass used to define the hosts’ stellar surface mass density, as long as at least 50–70 per cent of the hosts’ total stellar mass is used. The satellite locations are dependent upon the stellar masses of the satellites, with the most massive satellites having the most anisotropic distributions.


2014 ◽  
Vol 11 (S308) ◽  
pp. 475-476
Author(s):  
Jaan Vennik

AbstractWe studied the variation of stellar mass and various star-formation characteristics of satellite galaxies in a volume limited sample of nearby groups as a function of their group-centric distance and of their relative line-of-sight velocity in the group rest frame. We found clear radial dependencies, e.g. massive, red and passive satellites being distributed predominantly near the center of composite group. We also found some evidence of velocity modulation of star-forming properties of satellite galaxies near the group virial radius. We conclude that using kinematical data, it should be feasible to separate dynamical classes of bound, in-falling and 'backsplash' satellite galaxies.


2016 ◽  
Vol 457 (3) ◽  
pp. 2287-2300 ◽  
Author(s):  
Mehmet Alpaslan ◽  
Meiert Grootes ◽  
Pamela M. Marcum ◽  
Cristina Popescu ◽  
Richard Tuffs ◽  
...  

2020 ◽  
Vol 497 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Thomas A Davison ◽  
Mark A Norris ◽  
Joel L Pfeffer ◽  
Jonathan J Davies ◽  
Robert A Crain

ABSTRACT Modern observational and analytical techniques now enable the direct measurement of star formation histories and the inference of galaxy assembly histories. However, current theoretical predictions of assembly are not ideally suited for direct comparison with such observational data. We therefore extend the work of prior examinations of the contribution of ex situ stars to the stellar mass budget of simulated galaxies. Our predictions are specifically tailored for direct testing with a new generation of observational techniques by calculating ex situ fractions as functions of galaxy mass and morphological type, for a range of surface brightnesses. These enable comparison with results from large field of view (FoV) Integral Field Unit (IFU) spectrographs, and increasingly accurate spectral fitting, providing a look-up method for the estimated accreted fraction. We furthermore provide predictions of ex situ mass fractions as functions of galaxy mass, galactocentric radius, and environment. Using z = 0 snapshots from the 100 and 25 cMpc3 EAGLE (Evolution and Assembly of GaLaxies and their Environments) simulations, we corroborate the findings of prior studies, finding that ex situ fraction increases with stellar mass for central and satellite galaxies in a stellar mass range of 2 × 107 to 1.9 × 1012 M⊙. For those galaxies of mass M* > 5 × 108 M⊙, we find that the total ex situ mass fraction is greater for more extended galaxies at fixed mass. When categorizing satellite galaxies by their parent group/cluster halo mass, we find that the ex situ fraction decreases with increasing parent halo mass at fixed galaxy mass. This apparently counterintuitive result may be due to high passing velocities within large cluster haloes inhibiting efficient accretion on to individual galaxies.


2013 ◽  
Vol 434 (1) ◽  
pp. 209-221 ◽  
Author(s):  
Amanda E. Bauer ◽  
Andrew M. Hopkins ◽  
Madusha Gunawardhana ◽  
Edward N. Taylor ◽  
Ivan Baldry ◽  
...  

2012 ◽  
Vol 746 (2) ◽  
pp. 138 ◽  
Author(s):  
Tomer Tal ◽  
David A. Wake ◽  
Pieter G. van Dokkum ◽  
Frank C. van den Bosch ◽  
Donald P. Schneider ◽  
...  

Author(s):  
Valeria Coenda ◽  
Martín de los Rios ◽  
Hernán Muriel ◽  
Sofía A Cora ◽  
Héctor J Martínez ◽  
...  

Abstract We connect galaxy properties with their orbital classification by analysing a sample of galaxies with stellar mass M⋆ ≥ 108.5h−1M⊙ residing in and around massive and isolated galaxy clusters with mass M200 > 1015h−1M⊙ at redshift z = 0. The galaxy population is generated by applying the semi-analytic model of galaxy formation sag on the cosmological simulation MultiDark Planck 2. We classify galaxies considering their real orbits (3D) and their projected phase-space position using the roger  code (2D). We define five categories: cluster galaxies, galaxies that have recently fallen into a cluster, backsplash galaxies, infalling galaxies, and interloper galaxies. For each class, we analyse the 0.1(g − r) colour, the specific star formation rate (sSFR), and the stellar age, as a function of the stellar mass. For the 3D classes, we find that cluster galaxies have the lowest sSFR, and are the reddest and the oldest, as expected from environmental effects. Backsplash galaxies have properties intermediate between the cluster and recent infaller galaxies. For each 2D class, we find an important contamination by other classes. We find it necessary to separate the galaxy populations in red and blue to perform a more realistic analysis of the 2D data. For the red population, the 2D results are in good agreement with the 3D predictions. Nevertheless, when the blue population is considered, the 2D analysis only provides reliable results for recent infallers, infalling galaxies and interloper galaxies.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Marcel S. Pawlowski

Driven by the increasingly complete observational knowledge of systems of satellite galaxies, mutual spatial alignments and relations in velocities among satellites belonging to a common host have become a productive field of research. Numerous studies have investigated different types of such phase-space correlations and were met with varying degrees of attention by the community. The Planes of Satellite Galaxies issue is maybe the best-known example, with a rich field of research literature and an ongoing, controversial debate on how much of a challenge it poses to the ΛCDM model of cosmology. Another type of correlation, the apparent excess of close pairs of dwarf galaxies, has received considerably less attention despite its reported tension with ΛCDM expectations. With the fast expansion of proper motion measurements in recent years, largely driven by the Gaia mission, other peculiar phase-space correlations have been uncovered among the satellites of the Milky Way. Examples are the apparent tangential velocity excess of satellites compared to cosmological expectations, and the unexpected preference of satellites to be close to their pericenters. At the same time, other kinds of correlations have been found to be more in line with cosmological expectations—specifically, lopsided satellite galaxy systems and the accretion of groups of satellite galaxies. The latter has mostly been studied in cosmological simulations thus far, but it offers the potential to address some of the other issues by providing a way to produce correlations among the orbits of a group’s satellite galaxy members. This review is the first to provide an introduction to the highly active field of phase-space correlations among satellite galaxy systems. The emphasis is on summarizing existing, recent research and highlighting interdependencies between the different, currently almost exclusively individually considered types of correlations. Future prospects in light of upcoming observational facilities and our ever-expanding knowledge of satellite galaxy systems beyond the Local Group are also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document