scholarly journals Hydrodynamical Modeling of the Light Curves of Core-collapse Supernovae with HYPERION. I. The Mass Range 13–25 M ⊙, the Metallicities −3 ≤ [Fe/H] ≤ 0, and the Case of SN 1999em

2020 ◽  
Vol 902 (2) ◽  
pp. 95
Author(s):  
Marco Limongi ◽  
Alessandro Chieffi
2021 ◽  
Vol 503 (1) ◽  
pp. 797-814
Author(s):  
Alexandra Kozyreva ◽  
Petr Baklanov ◽  
Samuel Jones ◽  
Georg Stockinger ◽  
Hans-Thomas Janka

ABSTRACT Stars in the mass range from 8 M⊙ to 10 M⊙ are expected to produce one of two types of supernovae (SNe), either electron-capture supernovae (ECSNe) or core-collapse supernovae (CCSNe), depending on their previous evolution. Either of the associated progenitors retain extended and massive hydrogen-rich envelopes and the observables of these SNe are, therefore, expected to be similar. In this study, we explore the differences in these two types of SNe. Specifically, we investigate three different progenitor models: a solar-metallicity ECSN progenitor with an initial mass of 8.8 M⊙, a zero-metallicity progenitor with 9.6 M⊙, and a solar-metallicity progenitor with 9 M⊙, carrying out radiative transfer simulations for these progenitors. We present the resulting light curves for these models. The models exhibit very low photospheric velocity variations of about 2000 km s−1; therefore, this may serve as a convenient indicator of low-mass SNe. The ECSN has very unique light curves in broad-bands, especially the U band, and does not resemble any currently observed SN. This ECSN progenitor being part of a binary will lose its envelope for which reason the light curve becomes short and undetectable. The SN from the 9.6 M⊙ progenitor exhibits also quite an unusual light curve, explained by the absence of metals in the initial composition. The artificially iron-polluted 9.6 M⊙ model demonstrates light curves closer to normal SNe IIP. The SN from the 9 M⊙ progenitor remains the best candidate for so-called low-luminosity SNe IIP like SN 1999br and SN 2005cs.


2020 ◽  
Vol 496 (4) ◽  
pp. 4517-4545 ◽  
Author(s):  
Amir Sharon ◽  
Doron Kushnir

ABSTRACT The γ-ray deposition history in an expanding supernova (SN) ejecta has been mostly used to constrain models for Type Ia SN. Here we expand this methodology to core-collapse SNe, including stripped envelope (SE; Type Ib/Ic/IIb) and Type IIP SNe. We construct bolometric light curves using photometry from the literature and we use the Katz integral to extract the γ-ray deposition history. We recover the tight range of γ-ray escape times, $t_0\approx 30\!-\!45\, \textrm {d}$, for Type Ia SNe, and we find a new tight range $t_0\approx 80\!-\!140\, \textrm {d}$, for SE SNe. Type IIP SNe are clearly separated from other SNe types with $t_0\gtrsim 400\, \textrm {d}$, and there is a possible negative correlation between t0 and the synthesized 56Ni mass. We find that the typical masses of the synthesized 56Ni in SE SNe are larger than those in Type IIP SNe, in agreement with the results of Kushnir. This disfavours progenitors with the same initial mass range for these explosions. We recover the observed values of ET, the time-weighted integrated luminosity from cooling emission, for Type IIP, and we find hints of non-zero ET values in some SE SNe. We apply a simple γ-ray radiation transfer code to calculate the γ-ray deposition histories of models from the literature, and we show that the observed histories are a powerful tool for constraining models.


2016 ◽  
Vol 12 (S329) ◽  
pp. 25-31
Author(s):  
Melina C. Bersten

AbstractA very active area of research in the field of core-collapse supernovae (SNe) is the study of their progenitors and the links with different subtypes. Direct identification using pre- and post-SN images is a powerful method but it can only be applied to the most nearby events. An alternative method is the hydrodynamical modeling of SN light curves and expansion velocities, which can serve to characterize the progenitor (e.g. mass and radius) and the explosion itself (e.g. explosion energy and radioactive yields). This latter methodology is particularly powerful when combined with stellar evolution calculations. We review our current understanding of the properties of normal core-collapse SNe based chiefly on these two methods.


2016 ◽  
Vol 12 (S329) ◽  
pp. 451-451
Author(s):  
Alexey Tolstov ◽  
Ken’ichi Nomoto ◽  
Nozomu Tominaga ◽  
Miho Ishigaki ◽  
Sergei Blinnikov ◽  
...  

AbstractThe properties of the first generation of stars and their supernova (SN) explosions remain unknown due to the lack of their actual observations. Pop III stars may have been very massive and predicted to be exploded as pair-instability SNe, but the observed metal-poor stars show the abundance patterns which are more consistent with yields of core-collapse SNe. We study the multicolor light curves for a metal-free core-collapse SN models (massive stars of 25-100 solar mass range) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models which explain the observed abundance patterns of metal poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code STELLA. The calculated light curves of metal-free SNe are compared with our calculations of non-zero metallicity models and observed SNe.


2011 ◽  
Vol 7 (S279) ◽  
pp. 341-342
Author(s):  
Samuel Jones ◽  
Raphael Hirschi ◽  
Falk Herwig ◽  
Bill Paxton ◽  
Francis X. Timmes ◽  
...  

AbstractWe investigate the lowest mass stars that produce Type-II supernovae, motivated by recent results showing that a large fraction of type-II supernova progenitors for which there are direct detections display unexpectedly low luminosity (for a review see e.g. Smartt 2009). There are three potential evolutionary channels leading to this fate. Alongside the standard ‘massive star’ Fe-core collapse scenario we investigate the likelihood of electron capture supernovae (EC-SNe) from super-AGB (S-AGB) stars in their thermal pulse phase, from failed massive stars for which neon burning and other advanced burning stages fail to prevent the star from contracting to the critical densities required to initiate rapid electron-capture reactions and thus the star's collapse. We find it indeed possible that both of these relatively exotic evolutionary channels may be realised but it is currently unclear for what proportion of stars. Ultimately, the supernova light curves, explosion energies, remnant properties (see e.g. Knigge et al. 2011) and ejecta composition are the quantities desired to establish the role that these stars at the lower edge of the massive star mass range play.


2021 ◽  
Vol 508 (1) ◽  
pp. 828-841
Author(s):  
Chris Nagele ◽  
Hideyuki Umeda ◽  
Koh Takahashi ◽  
Takashi Yoshida ◽  
Kohsuke Sumiyoshi

ABSTRACT We calculate the neutrino signal from Population III supermassive star (SMS) collapse using a neutrino transfer code originally developed for core-collapse supernovae and massive star collapse. Using this code, we are able to investigate the SMS mass range thought to undergo neutrino trapping (∼104 M⊙), a mass range which has been neglected by previous works because of the difficulty of neutrino transfer. For models in this mass range, we observe a neutrino sphere with a large radius and low density compared to typical massive star neutrino spheres. We calculate the neutrino light curve emitted from this neutrino sphere. The resulting neutrino luminosity is significantly lower than the results of a previous analytical model. We briefly discuss the possibility of detecting a neutrino burst from an SMS or the neutrino background from many SMSs and conclude that the former is unlikely with current technology, unless the SMS collapse is located as close as 1 Mpc, while the latter is also unlikely even under very generous assumptions. However, the SMS neutrino background is still of interest as it may serve as a source of noise in proposed dark matter direct detection experiments.


2010 ◽  
Vol 33 (1) ◽  
pp. 19-23 ◽  
Author(s):  
D.F. Cowen ◽  
A. Franckowiak ◽  
M. Kowalski
Keyword(s):  

2011 ◽  
Vol 7 (S279) ◽  
pp. 34-39 ◽  
Author(s):  
Iair Arcavi

AbstractWe present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Program (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The latter class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. We present also host galaxy trends from the Palomar Transien Factory (PTF) core collapse SN sample, which augment some of the photometric results.


Author(s):  
Joseph P. Anderson ◽  
Phil A. James ◽  
Stacey M. Habergham ◽  
Lluís Galbany ◽  
Hanindyo Kuncarayakti

AbstractMapping the diversity of SNe to progenitor properties is key to our understanding of stellar evolution and explosive stellar death. Investigations of the immediate environments of SNe allow statistical constraints to be made on progenitor properties such as mass and metallicity. Here, we review the progress that has been made in this field. Pixel statistics using tracers of e.g. star formation within galaxies show intriguing differences in the explosion sites of, in particular SNe types II and Ibc (SNe II and SNe Ibc respectively), suggesting statistical differences in population ages. Of particular interest is that SNe Ic are significantly more associated with host galaxy Hα emission than SNe Ib, implying shorter lifetimes for the former. In addition, such studies have shown (unexpectedly) that the interacting SNe IIn do not explode in regions containing the most massive stars, which suggests that at least a significant fraction of their progenitors arise from the lower end of the core-collapse SN mass range. Host H ii region spectroscopy has been obtained for a significant number of core-collapse events, however definitive conclusions on differences between distinct SN types have to-date been elusive. Single stellar evolution models predict that the relative fraction of SNe Ibc to SNe II should increase with increasing metallicity, due to the dependence of mass-loss rates on progenitor metallicity. We present a meta-analysis of all current host H ii region oxygen abundances for CC SNe. It is concluded that the SN II to SN Ibc ratio shows little variation with oxygen abundance, with only a suggestion that the ratio increases in the lowest bin. Radial distributions of different SNe are discussed, where a central excess of SNe Ibc has been observed within disturbed galaxy systems, which is difficult to ascribe to metallicity or selection effects. Environment studies are also being undertaken for SNe Ia, where constraints can be made on the shortest delay times of progenitor systems. It is shown that ‘redder’ SNe Ia are more often found within star-forming regions. Environment studies are evolving to enable studies at higher spatial resolutions than previously possible, while in addition the advent of wide-field integral field unit instruments allows galaxy-wide spectral analyses which will provide fruitful results to this field. Some example contemporary results are shown in that direction.


Sign in / Sign up

Export Citation Format

Share Document