initial composition
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 52)

H-INDEX

21
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7406
Author(s):  
Matthias Kalthoff ◽  
Michael Raupach ◽  
Thomas Matschei

A promising process for the automatization of concrete structures is extrusion or extrusion molding. An innovative approach is the extrusion of concrete with imbedded technical textiles as reinforcement. For a successful extrusion, the rheological properties of the fresh concrete have to be optimized, as it must be extrudable and have sufficient early strength after leaving the mouthpiece. Within the scope of this paper, a process was developed which allows the integration of flexible as well as stiff impregnated textiles into the extrusion process. For this purpose, different textile-reinforced mortars (TRM) were extruded and their material characteristics were investigated. The results show that the mortar cross-section is considerably strengthened, especially when using carbon textiles, and that extrusion has considerable potential to produce high-performance TRM composites. In uniaxial tension tests with TRM, as well as in the pure roving tensile strength tests, textile stresses of approx. 1200 MPa were achieved for the glass textile and approx. 2250 MPa for the carbon textile. The position of the textile layer deviated a maximal 0.4 mm from its predesigned position, which shows its potential for producing tailor-made TRM elements. In addition, by adjusting the mortar mix design, it was possible to reduce the global warming potential (GWP) of the extrusion compound by up to 49.3% compared to the initial composition from preliminary studies.


2021 ◽  
Vol 77 (3) ◽  
pp. 86-98
Author(s):  
Prakash Bhuyar ◽  
Sathyavathi Sundararaju ◽  
Ho Xuan Feng ◽  
Mohd Hasbi Ab. Rahim ◽  
Sudhakar Muniyasamy ◽  
...  

Malaysia is one of the top eight countries that has a drawback of mismanaged plastic waste. This study intended to investigate polymer degradation using the biological technique with the help of microalgae to minimise the time required for biodegradation. This research article aims to identify the collected sample with the most suitable microalgae for the biodegradation of microplastic and to analyse the biodegradation of the polymer by microalgae. The results revealed that the consortium of Chlorella sp. and Cyanobacteria sp. were able to deteriorate low-density polyethene (LDPE sample) through several stages, and this was confirmed by UV-Spec, FESEM, EDX, CHNO, FTIR and DSC analysis. The results obtained revealed that microalgae producing exopolysaccharides (EPS) decreased the carbon and oxygen ratio. According to SEM micrographs, microalga may colonise, agglomerate, and adhere microplastics to its surface, regardless of its fractional size. The EDX analysis showed that the initial composition of carbon was 92.30 ± 1.23 %, while after the incubation, the carbon composition started decreasing from 53.18 % to 39.12 ± 1.08 %. Finally, there was a 37.91 % decrease in carbon weight from elemental analysise


IUCrData ◽  
2021 ◽  
Vol 6 (9) ◽  
Author(s):  
Qifa Hu ◽  
Bin Wen ◽  
Changzeng Fan

An aluminium-abundant Al8Mn5/γ-brass-type intermetallic with formula Al8.6Mn4.4, which is isotypic with γ-Al8Cr5 and γ-Al8V5, was discovered by high-temperature sintering of an Al/Mn mixture with initial composition Al2Mn. Structure analysis revealed that one special position (Wyckoff site 18h in space group R\overline{3}m) is shared by Al and Mn, with refined site occupancy factors of 0.7 and 0.3, respectively. The present low-temperature Al8Mn5-type phase crystallizes in the centrosymmetric space group R\overline{3}m (No. 166), rather than R3m (No. 160) as previously reported for the same intermetallic characterized by TEM measurements [Zeng et al. (2018). Acta Mater. 153, 364–376].


2021 ◽  
Author(s):  
Tiffany Raynaud ◽  
Marion Devers ◽  
Aymé Spor ◽  
Manuel Blouin

AbstractArtificial selection can be conducted at the community level in the laboratory through a differential propagation of the communities according to their level of expression of a targeted function (i.e. community phenotype). Working with communities instead of individuals as selection units brings in additional sources of variation in the considered phenotype that can arise through changes in community structure and influence the outcome of the artificial selection. These sources of variation could even be increased by manipulating species diversity. In this study, we wanted to assess the effect of manipulating initial community richness on artificial selection efficiency, defined as the change in the targeted function over time as compared to a control treatment without artificial selection. We applied artificial selection for a high productivity on synthetic bacterial communities varying for their initial richness level (from one to 16 strains). Our results showed that, overall, the communities that were artificially selected were 16% more productive than the control communities. Community richness positively influenced community productivity and metabolic capacities and was a strong determinant of the dynamics of community evolution. Our results suggested that community richness could influence artificial selection efficiency but a convergence of the community composition might have limited the effect of diversity on artificial selection efficiency. We propose that applying artificial selection on communities varying for their diversity could allow to find communities differing for their level of expression of a function but also for their responsiveness to artificial selection, provided that their initial composition is different enough.


Author(s):  
N. Pittas ◽  
Vasileios Moutsios ◽  
Demos P. Georgiou ◽  
Irini Muravieva

This paper investigates the validity of the LECKNER to calculate the of mixture of gas combustion in by H. and R. J. Tucker method for enclosures with surfaces exposed to significant thermal radiation. The analysis is focused on a specific combustion chamber in a three-bed regenerative oxidizer and calculates the coefficient of absorption and the corresponding thermal irradiation flux exchanges among the hot wall surfaces of the chamber. The temperature distribution and the initial composition of the gaseous mixture at the inlet plane were assumed known.


2021 ◽  
Author(s):  
Meenakshi Banerjee ◽  
Vedanta Adak ◽  
Upama Dutta

<p>Corona texture between olivine-plagioclase is a common phenomenon in metabasic rocks and has been reported from different geological terrane of the world. However, the documented coronal phases from these terrane show significant variation in terms of number and composition. In this study, we have tried to explore the effect of different parameters like pressure, temperature, reactant bulk composition, availability of fluid, chemical potential gradient etc. on the genesis of such distinct coronal minerals. To address this question, we have compared three coronal assemblages developed between olivine and plagioclase from published literature (Gallien et al. 2012; Banerjee et al. 2019; Adak & Dutta, 2020). These three samples represent different terrane and have distinctly separate geological evolutionary history that led in formation of the texture. The samples are – i) #CGGC, a mafic intrusive from Chotanagpur Granite Gneissic Complex, India (Adak & Dutta, 2020); ii) #GTSI, an olivine bearing mafic dyke from Granulite Terrane of South India (Banerjee et al. 2019); and iii) #VFH, a troctolitic gabbro from Valle Fértil and La Huerta range, Argentina (Gallien et al. 2012). The layers in coronae of #CGGC and #GTSI are defined by three phases of separate composition; orthopyroxene and amphibole are common, but #CGGC contains spinel and #GTSI contains magnetite. Whereas, #VFH contains four phases, clinopyroxene in addition to orthopyroxene, spinel and amphibole. Besides evaluation of reactant composition and their effect, our methodology also incorporates Schrienemaker’s analysis through P-T and chemical potential diagrams. Considering the chemistry of both the reactant and product phases we have used a simplified CMASH system and calculated μCaO–μH<sub>2</sub>O, μMgO–μH<sub>2</sub>O, μCaO–μMgO diagram along with petrogenetic grid for each sample. The results show that along with change in P-T, factors like initial composition of the reactant minerals, behaviour of the system during reaction (open/closed) and P-T-t path of evolution also play significant role in determining the products in coronae formed from the reactant olivine and plagioclase.</p><p> </p>


2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Aleksandra A. Rusak ◽  
Tatyana I. Shchekina ◽  
Nina G. Zinovyeva ◽  
Yana O. Alferyeva ◽  
Vladimir A. Khvostikov ◽  
...  

The phase relations in the Si-Al-Na-K-Li-F-H-O model granite system are studied experimentally at T = 800, 700 °C and P = 1 and 2 kbar, as well as at T = 600, 550, 500 and 400 °C and P = 1 kbar and different water content from 2 to 50 wt.%. The initial composition was set in such a way that the composition of the resulting silicate melt was close to the granite eutectic. It is shown that in the presence of Li, two immiscible melts are formed in the system—an aluminosilicate (L) and a salt alkali-aluminofluoride (LF). It is shown that at Т = 800 °С, Р = 1 kbar and 2 kbar and water content > 10 wt. %, three phases are equilibrium in the system: L, LF, and fluid (Fl). Cryolite (Crl), which does not contain REE, begins to crystallize from the salt melt at 700 °C. Quartz (Qtz) crystallizes from the silicate melt at 600 °C and the equilibrium phases are L, LF, Crl, Qtz. At T = 500 °C Qtz, Na and K aluminofluorides and polylithionite crystallize from the aluminosilicate melt. The joint crystallization of Crl and Qtz is observed. Large crystals of cryolite and elpasolite are formed in both the salt and silicate melts. At the same time, the residual salt melt enriched in Li and REE is partially preserved. LF is completely crystallized at 400 °C, and L is in a metastable state. It is established that REE, Sc, Y and Li accumulate in the salt melt up to 500 °C with partition coefficients >> 1. REE and Sc enter into composition of the crystal phases at T = 500 °C and 400 °C. Sc partially isomorphically replaces Al. REE most often forms its own fluoride phases of the LnF3 type.


2021 ◽  
Vol 503 (1) ◽  
pp. 797-814
Author(s):  
Alexandra Kozyreva ◽  
Petr Baklanov ◽  
Samuel Jones ◽  
Georg Stockinger ◽  
Hans-Thomas Janka

ABSTRACT Stars in the mass range from 8 M⊙ to 10 M⊙ are expected to produce one of two types of supernovae (SNe), either electron-capture supernovae (ECSNe) or core-collapse supernovae (CCSNe), depending on their previous evolution. Either of the associated progenitors retain extended and massive hydrogen-rich envelopes and the observables of these SNe are, therefore, expected to be similar. In this study, we explore the differences in these two types of SNe. Specifically, we investigate three different progenitor models: a solar-metallicity ECSN progenitor with an initial mass of 8.8 M⊙, a zero-metallicity progenitor with 9.6 M⊙, and a solar-metallicity progenitor with 9 M⊙, carrying out radiative transfer simulations for these progenitors. We present the resulting light curves for these models. The models exhibit very low photospheric velocity variations of about 2000 km s−1; therefore, this may serve as a convenient indicator of low-mass SNe. The ECSN has very unique light curves in broad-bands, especially the U band, and does not resemble any currently observed SN. This ECSN progenitor being part of a binary will lose its envelope for which reason the light curve becomes short and undetectable. The SN from the 9.6 M⊙ progenitor exhibits also quite an unusual light curve, explained by the absence of metals in the initial composition. The artificially iron-polluted 9.6 M⊙ model demonstrates light curves closer to normal SNe IIP. The SN from the 9 M⊙ progenitor remains the best candidate for so-called low-luminosity SNe IIP like SN 1999br and SN 2005cs.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 815
Author(s):  
Francesca Coppola ◽  
Luigi Picariello ◽  
Martino Forino ◽  
Luigi Moio ◽  
Angelita Gambuti

Background: Three accelerated oxidation tests were proposed to simulate red wine oxidation thus providing information useful to correctly manage moderate oxygen exposure of wine during aging in regard to phenolic composition and wine color. Since the results of the tests have never been compared on wines with different initial composition, the aim of this study was to find a suitable method to simulate oxidation of any still red wine. Methods: Aglianico, Barbera, Gaglioppo, Magliocco, and Nerello wines were treated with (1) three cycles of air saturation, (2) the addition of hydrogen peroxide, and (3) the addition of acetaldehyde. Changes in chromatic characteristics and phenolic composition were determined by spectrophotometric and HPLC methods. Results: Important differences in the behavior of the different wines were detected: the highest formation of polymeric pigments was observed in Barbera and Aglianico wines. In contrast, Gaglioppo and Magliocco wines showed a lower variability before and after the oxidation probably due to the lower anthocyanin/tannin ratio. Among the accelerated oxidation tests applied, no significant differences in color parameters and phenolic composition were detected in samples treated with the addition of H2O2 and the air saturation method. Conclusion: The study demonstrated that H2O2 addition is a successful tool to predict the evolution of different phenolic compounds during the air saturation treatment of wines.


2021 ◽  
Vol 27 (7) ◽  
pp. 6-17
Author(s):  
Z. Golitsyna ◽  
◽  
A. Kirdyashkin ◽  

The problem of compositional analysis of extraterrestrial crystalline rocks in the study of celestial bodies is considered. Since most of the bodies, terrestrial planets and their surrounding objects may contain clinopyroxenes, it is possible to study the temperature and pressure of rock formation in certain areas according to the state of these minerals, and the studies can be carried out identically to the geothermobarometry of Earth rocks. The paper presents the results of experimental studies of clinopyroxene compositions of the basic model system CaO-MgO-Al2O3-SiO2 in the pressure range of 12...30 kbar and temperatures of 1325...1650 °C, which can be assumed as conditions for the formation of lunar rocks. The development of the necessary experimental data obtained in terrestrial conditions will help in the future to conduct remote studies of the Moon and other celestial bodies without the need to deliver soil to Earth. The revealed clinopyroxenes can be analyzed with existing geothermometers and geobarometers obtained for different ranges of P-T conditions. The possibility of creating a new geothermobarometer based on the distribution of minals or cations in clinopyroxene specifically for lunar rocks is not excluded. The main features and possible instrumentation of the apparatus intended for the study of the lunar surface are described. The study of different areas of the lunar surface will determine where the country rocks are located most closely to the surface. Analysis of silicate components of the lunar rocks will make it possible to get closer to the solution to the problem of initial composition of the lunar mantle


Sign in / Sign up

Export Citation Format

Share Document