scholarly journals Random Walk and Trapping of Interplanetary Magnetic Field Lines: Global Simulation, Magnetic Connectivity, and Implications for Solar Energetic Particles

2021 ◽  
Vol 908 (2) ◽  
pp. 174
Author(s):  
Rohit Chhiber ◽  
David Ruffolo ◽  
William H. Matthaeus ◽  
Arcadi V. Usmanov ◽  
Paisan Tooprakai ◽  
...  
2021 ◽  
Author(s):  
David Ruffolo ◽  
Rohit Chhiber ◽  
William H. Matthaeus ◽  
Arcadi V. Usmanov ◽  
Paisan Tooprakai ◽  
...  

<p>The random walk of magnetic field lines is an important ingredient in understanding how the connectivity of the magnetic field affects the spatial transport and diffusion of charged particles. As solar energetic particles (SEPs) propagate away from near-solar sources, they interact with the fluctuating magnetic field, which modifies their distributions. We develop a formalism in which the differential equation describing the field line random walk contains both effects due to localized magnetic displacements and a non-stochastic contribution from the large-scale expansion. We use this formalism together with a global magnetohydrodynamic simulation of the inner-heliospheric solar wind, which includes a turbulence transport model, to estimate the diffusive spreading of magnetic field lines that originate in different regions of the solar atmosphere. We first use this model to quantify field line spreading at 1 au, starting from a localized solar source region, and find rms angular spreads of about 20 – 60 degrees. In the second instance, we use the model to estimate the size of the source regions from which field lines observed at 1 au may have originated, thus quantifying the uncertainty in calculations of magnetic connectivity; the angular uncertainty is estimated to be about 20 degrees. Finally, we estimate the filamentation distance, i.e., the heliocentric distance up to which field lines originating in magnetic islands can remain strongly trapped in filamentary structures. We emphasize the key role of slab-like fluctuations in the transition from filamentary to more diffusive transport at greater heliocentric distances. This research has been supported in part by grant RTA6280002 from Thailand Science Research and Innovation and the Parker Solar Probe mission under the ISOIS project (contract NNN06AA01C) and a subcontract to University of Delaware from Princeton University (SUB0000165).  MLG acknowledges support from the Parker Solar Probe FIELDS MAG team.  Additional support is acknowledged from the  NASA LWS program  (NNX17AB79G) and the HSR program (80NSSC18K1210 & 80NSSC18K1648).</p>


2009 ◽  
Vol 75 (2) ◽  
pp. 183-192 ◽  
Author(s):  
I. KOURAKIS ◽  
R. C. TAUTZ ◽  
A. SHALCHI

AbstractThe random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement 〈(Δx)2〉 is carried out, in terms of the position variable z. It is shown that 〈(Δx)2〉 varies as ~z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field-line random walk for isotropic turbulence.


2008 ◽  
Vol 26 (8) ◽  
pp. 2371-2382 ◽  
Author(s):  
S. Haaland ◽  
G. Paschmann ◽  
M. Förster ◽  
J. Quinn ◽  
R. Torbert ◽  
...  

Abstract. A major part of the plasma in the Earth's magnetotail is populated through transport of plasma from the solar wind via the magnetotail lobes. In this paper, we present a statistical study of plasma convection in the lobes for different directions of the interplanetary magnetic field and for different geomagnetic disturbance levels. The data set used in this study consists of roughly 340 000 one-minute vector measurements of the plasma convection from the Cluster Electron Drift Instrument (EDI) obtained during the period February 2001 to June 2007. The results show that both convection magnitude and direction are largely controlled by the interplanetary magnetic field (IMF). For a southward IMF, there is a strong convection towards the central plasma sheet with convection velocities around 10 km s−1. During periods of northward IMF, the lobe convection is almost stagnant. A By dominated IMF causes a rotation of the convection patterns in the tail with an oppositely directed dawn-dusk component of the convection for the northern and southern lobe. Our results also show that there is an overall persistent duskward component, which is most likely a result of conductivity gradients in the footpoints of the magnetic field lines in the ionosphere.


2008 ◽  
Vol 26 (6) ◽  
pp. 1617-1639 ◽  
Author(s):  
D. V. Sarafopoulos

Abstract. We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≈7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≈10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.


1992 ◽  
Vol 97 (A2) ◽  
pp. 1597 ◽  
Author(s):  
L. C. Tan ◽  
G. M. Mason ◽  
M. A. Lee ◽  
B. Klecker ◽  
F. M. Ipavich

Sign in / Sign up

Export Citation Format

Share Document