scholarly journals The Gas Content and Stripping of Local Group Dwarf Galaxies

2021 ◽  
Vol 913 (1) ◽  
pp. 53
Author(s):  
Mary E. Putman ◽  
Yong Zheng ◽  
Adrian M. Price-Whelan ◽  
Jana Grcevich ◽  
Amalya C. Johnson ◽  
...  
2018 ◽  
Vol 14 (S344) ◽  
pp. 29-37
Author(s):  
Andrew A. Cole

AbstractLocal Group dwarf galaxies are a unique astrophysical laboratory because they are the only objects in which we can reliably and precisely characterize the star formation histories of low-mass galaxies going back to the epoch of reionization. There are of order 100 known galaxies less massive than the Small Magellanic Cloud within ~1 Megaparsec of the Milky Way, with a vide variety of star formation history, gas content, and mass to light ratios. In this overview the current understanding of the formation and evolution of low-mass galaxies across cosmic time will be presented, and the possibility of drawing links between the properties of individual systems and the broader Local Group and cosmological context will be discussed. Local Group dwarfs will remain a uniquely powerful testbed to constrain the properties of dark matter and to evaluate the performance of simulations for the foreseeable future.


2018 ◽  
Vol 14 (S344) ◽  
pp. 49-52
Author(s):  
Anderson Caproni ◽  
Gustavo A. Lanfranchi ◽  
Gabriel H. Campos Baião ◽  
Grzegorz Kowal ◽  
Diego Falceta-Gonçalves

AbstractDwarf spheroidal galaxies of the Local Group share a similar characteristic nowadays: a low amount of gas in their interiors. In this work, we present results from a three-dimensional hydrodynamical simulation of the gas inside an object with similar characteristics of the Ursa Minor galaxy. We evolved the initial gas distribution over 3 Gyr, considering the effects of the types Ia and II supernovae. The instantaneous supernovae rates were derived from a chemical evolution model applied to spectroscopic data of the Ursa Minor galaxy. Our simulation shows that the amount of gas that is lost varies with time and galactocentric radius. The highest gas-loss rates occurred during the first 600 Myr of evolution. Our results also indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies).


2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


2019 ◽  
Vol 14 (S351) ◽  
pp. 317-320
Author(s):  
Søren S. Larsen

AbstractThis contribution gives an update on on-going efforts to characterise the detailed chemical abundances of Local Group globular clusters (GCs) from integrated-light spectroscopy. Observations of a sample of 20 GCs so far, located primarily within dwarf galaxies, show that at low metallicities the [α/Fe] ratios are generally indistinguishable from those in Milky Way GCs. However, the “knee” above which [α/Fe] decreases towards Solar-scaled values occurs at lower metallicities in the dwarfs, implying that GCs follow the same trends seen in field stars. Efforts are underway to establish NLTE corrections for integrated-light abundance measurements, and preliminary results for Mn are discussed.


2016 ◽  
Vol 827 (2) ◽  
pp. 89 ◽  
Author(s):  
Erik J. Tollerud ◽  
Marla C. Geha ◽  
Jana Grcevich ◽  
Mary E. Putman ◽  
Daniel R. Weisz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document