scholarly journals Dynamical Analysis of the Dark Matter and Central Black Hole Mass in the Dwarf Spheroidal Leo I

2021 ◽  
Vol 921 (2) ◽  
pp. 107
Author(s):  
M. J. Bustamante-Rosell ◽  
Eva Noyola ◽  
Karl Gebhardt ◽  
Maximilian H. Fabricius ◽  
Ximena Mazzalay ◽  
...  
Author(s):  
Hajime Inoue

Abstract We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clouds in a nuclear bulge but is braked via the dynamical frictions from the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases, and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circumnuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass, and this could explain the observed correlation of the black hole mass with the bulge mass.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2010 ◽  
Author(s):  
Douglas W. Shields ◽  
J. Adam Hughes ◽  
Scott R. Barrows ◽  
Ben Davis ◽  
Daniel Kennefick ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 5721-5729 ◽  
Author(s):  
Elliot Y Davies ◽  
Philip Mocz

ABSTRACT We explore the effect of a supermassive black hole (SMBH) on the density profile of a fuzzy dark matter (FDM) soliton core at the centre of a dark matter (DM) halo. We numerically solve the Schrödinger–Poisson equations, treating the black hole as a gravitational point mass, and demonstrate that this additional perturbing term has a ‘squeezing’ effect on the soliton density profile, decreasing the core radius, and increasing the central density. In the limit of large black hole mass, the solution approaches one akin to the hydrogen atom, with radius inversely proportional to the black hole mass. By applying our analysis to two specific galaxies (M87 and the Milky Way) and pairing it with known observational limits on the amount of centrally concentrated DM, we obtain a constraint on the FDM particle mass, finding that the range 10−22.12 eV ≲ m ≲ 10−22.06 eV should be forbidden (taking into account additional factors concerning the lifetime of the soliton in the vicinity of a black hole). Improved observational mass measurements of the black hole and total enclosed masses will significantly extend the lower bound on the excluded FDM mass region, while self-consistent theoretical modelling of the soliton–black hole system can extend the upper bound.


1997 ◽  
Vol 159 ◽  
pp. 40-43 ◽  
Author(s):  
K. Hayashida

AbstractASCA observations of four narrow-line Seyfert 1 galaxies are presented. Among the four sources, two show X-ray spectra consisting of soft and hard components. Rapid X-ray variability is observed in all four sources. We estimate the central black-hole mass of these sources and find indications that the apparent luminosities exceed the Eddington limit under some assumptions.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
Xu-Liang Fan

Radio-Loud narrow-line Seyfert 1 galaxies (NLS1s), especially the extremely radio-loud ones, are widely accepted as the jetted versions of NLS1s. We explore the radio-loud fraction for NLS1s with recently released LoTSS DR1 at 150 MHz. The radio detection rate is about 28% for LoTSS DR1. The radio detected NLS1s have lower redshift than the non-detected ones. Moreover, the 150 MHz radio luminosities of NLS1s detected by LoTSS are about two orders of magnitude weaker than those of the previous samples. By defining the radio loudness with the ratio between 150 MHz radio flux and SDSS r band flux, the radio-loud fraction is about 1% with the critical radio loudness equalling 100. Radio loudness shows no dependence on central black hole mass, while weak correlations are found between radio loudness and disk luminosity, as well as Eddington ratio.


2013 ◽  
Vol 9 (S303) ◽  
pp. 379-381
Author(s):  
M. Blank ◽  
W. J. Duschl

AbstractWe show that the observed time lag between starburst and AGN activity can be explained by a viscous time lag the gas needs to flow through the AGN's accretion disk before reaching the central black hole. Our calculations reproduce the observed time lag and are in agreement with the observed correlation between black hole mass and stellar velocity dispersion.


Sign in / Sign up

Export Citation Format

Share Document