scholarly journals Radial Migration from the Metallicity Gradient of Open Clusters and Outliers

2021 ◽  
Vol 919 (1) ◽  
pp. 52
Author(s):  
Haopeng Zhang ◽  
Yuqin Chen ◽  
Gang Zhao
2020 ◽  
Vol 495 (3) ◽  
pp. 2673-2681 ◽  
Author(s):  
Y Q Chen ◽  
G Zhao

ABSTRACT Radial migration is an important process in the Galactic disc. A few open clusters show some evidence on this mechanism but there is no systematic study. In this work, we investigate the role of radial migration on the Galactic disc based on a large sample of 146 open clusters with homogeneous metallicity and age from Netopil et al. and kinematics calculated from Gaia DR2. The birth site Rb, guiding radius Rg, and other orbital parameters are calculated, and the migration distance |Rg − Rb| is obtained, which is a combination of metallicity, kinematics, and age information. It is found that 44 per cent open clusters have |Rg − Rb| < 1 kpc, for which radial migration (churning) is not significant. Among the remaining 56 per cent open clusters with |Rg − Rb| > 1 kpc, young ones with t < 1.0 Gyr tend to migrate inward, while older clusters usually migrate outward. Different mechanisms of radial migration between young and old clusters are suggested based on their different migration rates, Galactic locations, and orbital parameters. For the old group, we propose a plausible way to estimate migration rate and obtain a reasonable value of $1.5 \pm 0.5 \,\rm {kpc\,Gyr}^{ -1}$ based on 10 intermediate-age clusters at the outer disc, where the existence of several special clusters implies its complicate formation history.


Author(s):  
Lorenzo Spina ◽  
Yuan-Sen Ting ◽  
Gayandhi M De Silva ◽  
Neige Frankel ◽  
Sanjib Sharma ◽  
...  

Abstract Open clusters are unique tracers of the history of our own Galaxy’s disk. According to our membership analysis based on Gaia astrometry, out of the 226 potential clusters falling in the footprint of GALAH or APOGEE, we find that 205 have secure members that were observed by at least one of the survey. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disk of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is −0.076 ± 0.009 dex kpc−1, which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the [Fe/H] - guiding radius (rguid) plane is −0.073 ± 0.008 dex kpc−1. We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disk differently than field stars. In particular, at given radius, open clusters show an age-metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]-rguid-age space, which are important to understand production rates of different elements as a function of space and time.


1967 ◽  
Vol 31 ◽  
pp. 41-43
Author(s):  
Th. Schmidt-Kaler ◽  
R. Schwartz

Neutral hydrogen is found in every young cluster observed, usually extending beyond the optical diameter, and in some cases showing expanding motions.


1998 ◽  
Vol 506 (1) ◽  
pp. 347-359 ◽  
Author(s):  
David Barrado y Navascués ◽  
John R. Stauffer ◽  
Sofia Randich

10.1038/83967 ◽  
2001 ◽  
Vol 4 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Bagirathy Nadarajah ◽  
Janice E. Brunstrom ◽  
Jaime Grutzendler ◽  
Rachel O. L. Wong ◽  
Alan L. Pearlman

Author(s):  
Ataru Tanikawa ◽  
Tomoya Kinugawa ◽  
Jun Kumamoto ◽  
Michiko S Fujii

Abstract We estimate formation rates of LB-1-like systems through dynamical interactions in the framework of the theory of stellar evolution before the discovery of the LB-1 system. The LB-1 system contains a ∼70 ${M_{\odot}}$ black hole (BH), a so-called pair instability (PI) gap BH, and a B-type star with solar metallicity, and has nearly zero eccentricity. The most efficient formation mechanism is as follows. In an open cluster, a naked helium star (with ∼20 ${M_{\odot}}$) collides with a heavy main sequence star (with ∼50 ${M_{\odot}}$) which has a B-type companion. The collision results in a binary consisting of the collision product and the B-type star with a high eccentricity. The binary can be circularized through the dynamical tide with radiative damping of the collision product envelope. Finally, the collision product collapses to a PI-gap BH, avoiding pulsational pair instability and pair instability supernovae because its He core is as massive as the pre-colliding naked He star. We find that the number of LB-1-like systems in the Milky Way galaxy is ∼0.01(ρoc/104 ${M_{\odot}}$ pc−3), where ρoc is the initial mass densities of open clusters. If we take into account LB-1-like systems with O-type companion stars, the number increases to ∼0.03(ρoc/104 ${M_{\odot}}$ pc−3). This mechanism can form LB-1-like systems at least ten times more efficiently than the other mechanisms: captures of B-type stars by PI-gap BHs, stellar collisions between other types of stars, and stellar mergers in hierarchical triple systems. We conclude that no dynamical mechanism can explain the presence of the LB-1 system.


2020 ◽  
Vol 132 (1009) ◽  
pp. 034502 ◽  
Author(s):  
ChaoJie Hao ◽  
Ye Xu ◽  
ZhenYu Wu ◽  
ZhiHong He ◽  
ShuaiBo Bian

2021 ◽  
Vol 366 (7) ◽  
Author(s):  
B. Akbulut ◽  
S. Ak ◽  
T. Yontan ◽  
S. Bilir ◽  
T. Ak ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document