scholarly journals Acceleration of Solar Energetic Particles by the Shock of Interplanetary Coronal Mass Ejection

2021 ◽  
Vol 923 (1) ◽  
pp. 80
Author(s):  
Shanwlee Sow Mondal ◽  
Aveek Sarkar ◽  
Bhargav Vaidya ◽  
Andrea Mignone

Abstract Interplanetary coronal mass ejection (ICME) shocks are known to accelerate particles and contribute significantly to solar energetic particle events. We have performed magnetohydrodynamic-particle in cell simulations of ICME shocks to understand the acceleration mechanism. These shocks vary in Alfvénic Mach numbers as well as in magnetic field orientations (parallel and quasi-perpendicular). We find that diffusive shock acceleration plays a significant role in accelerating particles in a parallel ICME shock. In contrast, shock drift acceleration (SDA) plays a pivotal role in a quasi-perpendicular shock. High-Mach shocks are seen to accelerate particles more efficiently. Our simulations suggest that background turbulence and local particle velocity distribution around the shock can indirectly hint at the acceleration mechanism. Our results also point toward a few possible in situ observations that could validate our understanding of the topic.

2006 ◽  
Vol 642 (1) ◽  
pp. 541-553 ◽  
Author(s):  
J. Krall ◽  
V. B. Yurchyshyn ◽  
S. Slinker ◽  
R. M. Skoug ◽  
J. Chen

2016 ◽  
Vol 12 (S327) ◽  
pp. 67-70
Author(s):  
J. Palacios ◽  
C. Cid ◽  
E. Saiz ◽  
A. Guerrero

AbstractWe have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.


2021 ◽  
Author(s):  
Kamen Kozarev ◽  
Mohamed Nedal ◽  
Rositsa Miteva ◽  
Pietro Zucca ◽  
Momchil Dechev

<p>The lower and middle solar corona up to about 30 solar radii is thought to be an important region for early acceleration and transport of solar energetic particles (SEPs) by coronal mass ejection-driven shock waves. There, these waves propagate into a highly variable dynamic medium with steep gradients and rapidly expanding coronal magnetic fields, which modulates the particle acceleration near the shock/wave surfaces, and the way SEPs spread into the heliosphere. We present a study modeling the acceleration of SEPs in over 50 separate global coronal shock events between 1 and 30 solar radii. As part of the SPREAdFAST framework project, we analyzed the interaction of off-limb coronal bright fronts (CBF) observed with the SDO/AIA EUV telescope with realistic model coronal plasma based on results from synoptic magnetohydrodynamic (MHD) and differential emission measure (DEM) models. We used realistic quiet-time proton spectra observed near Earth to form seed suprathermal populations accelerated in our diffusive shock acceleration model (Kozarev & Schwadron, 2016). We summarize our findings and present implications for nowcasting SEP acceleration and heliospheric connectivity.</p>


2017 ◽  
Vol 13 (S335) ◽  
pp. 43-48 ◽  
Author(s):  
Alexei Struminsky

AbstractAt present two concurrent paradigms of solar energetic particle (SEP) origin exist: acceleration directly in the flare site or by the shock wave of coronal mass ejection (CME). Active discussions on a relative role of flares and coronal mass ejections for SEP acceleration and propagation are continuous until now. In my opinion only future observations of solar high energy γ–emission with better spectral, spatial and temporal resolution may clarify this issue. In my report I discuss possible signatures of the flare and shock acceleration processes. What is a picture provided by the current instruments? What can we expect to observe with a perfect instrument in high energy gamma rays in one or another case on a time scale of impulsive and long decay flare phases?


1999 ◽  
Vol 26 (16) ◽  
pp. 2613-2616 ◽  
Author(s):  
W. C. Feldman ◽  
R. M. Skoug ◽  
J. T. Gosling ◽  
D. J. McComas ◽  
R. L. Tokar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document