scholarly journals The X-Ray Outburst of PG 1553+113: A Precession Effect of Two Jets in the Supermassive Black Hole Binary System

2021 ◽  
Vol 922 (2) ◽  
pp. 222
Author(s):  
Shifeng Huang ◽  
Hongxing Yin ◽  
Shaoming Hu ◽  
Xu Chen ◽  
Yunguo Jiang ◽  
...  

Abstract Blazar PG 1553+113 is thought to be a host of supermassive black hole binary system. A 2.2 yr quasi-periodicity in the γ-ray light curve was detected, possibly a result of jet precession. Motivated by the previous studies based on the γ-ray data, we analyzed the X-ray light curve and spectra observed during 2012–2020. The 2.2 yr quasi-periodicity might be consistent with the main-flare recurrence in the X-ray light curve. When a weak rebrightening in the γ-ray was observed, a corresponding relatively strong brightening in the X-ray light curve can be identified. The harder-when-brighter tendency in both X-ray main and weak flares was shown, as well as a weak softer-when-brighter behavior for the quiescent state. We explore the possibility that the variability in the X-ray band can be interpreted with two-jet precession scenario. Using the relation between jets and accretion disks, we derive the primary black hole mass ≃3.47 × 108 M ☉ and mass of the secondary one ≃1.40 × 108 M ☉, and their mass ratio ∼0.41.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinwen Shu ◽  
Wenjie Zhang ◽  
Shuo Li ◽  
Ning Jiang ◽  
Liming Dou ◽  
...  

AbstractOptical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray detections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.


1996 ◽  
Vol 468 ◽  
pp. 380 ◽  
Author(s):  
Jerome A. Orosz ◽  
Charles D. Bailyn ◽  
Jeffrey E. McClintock ◽  
Ronald A. Remillard

2020 ◽  
Vol 644 ◽  
pp. L9
Author(s):  
J. R. Song ◽  
X. W. Shu ◽  
L. M. Sun ◽  
Y. Q. Xue ◽  
C. Jin ◽  
...  

RX J1301.9+2747 is an ultrasoft active galactic nucleus (AGN) with unusual X-ray variability that is characterized by a long quiescent state and a short-lived flare state. The X-ray flares are found to recur quasi-periodically on a timescale of 13−20 ks. Here, we report the analysis of the light curve in the quiescent state from two XMM-Newton observations spanning 18.5 years, along with the discovery of a possible quasi-periodic X-ray oscillation (QPO) with a period of ∼1500 s. The QPO is detected at the same frequency in the two independent observations, with a combined significance of > 99.89%. The QPO is in agreement with the relation between frequency and black hole mass (MBH) that has been reported in previous works for AGNs and Galactic black hole X-ray binaries (XRBs). The QPO frequency is stable over almost two decades, suggesting that it may correspond to the high-frequency type found in XRBs and originates, perhaps, from a certain disk resonance mode. In the 3:2 twin-frequency resonance model, our best estimate on the MBH range implies that a maximal black hole spin can be ruled out. We find that all ultrasoft AGNs reported so far display quasi-periodicities in the X-ray emission, suggesting a possible link on the part of the extreme variability phenomenon to the ultrasoft X-ray component. This indicates that ultrasoft AGNs could be the most promising candidates in future searches for X-ray periodicities.


2018 ◽  
Vol 621 ◽  
pp. A11 ◽  
Author(s):  
S. J. Qian ◽  
S. Britzen ◽  
T. P. Krichbaum ◽  
A. Witzel

Context. Studies of periodic and quasi-periodic phenomena in optical and radio bands are important for understanding the physical processes in quasars. Investigation of periodic/quasi-periodic behavior of the relativistic jets in blazars is particularly significant because it can provide unique information about the formation, collimation, and acceleration of the jets and the properties of the central engines (black hole/accretion disk systems) in blazars. Aims. We investigate the parsec-scale kinematics of the 31 superluminal components observed in blazar 3C279 and attempt to search for evidence of its jet precession and double-jet structure. Methods. The previously suggested precessing jet nozzle model is applied to model-fit the kinematics of its superluminal components observed during the 1981–2015 period. It is shown that the parsec-scale kinematics of the entire source can be interpreted in terms of a double-jet scenario. Results. The superluminal components observed in 3C279 can be divided into two groups that are ejected from two relativistic jets. The two jets have different orientations in space and jet-cone shapes, but both jets precess with the same precession period of 25 yr (16.3 yr in the source frame). The kinematic features of all the superluminal knots (trajectory, core separation, and apparent velocity) can be consistently explained. Their innermost trajectories follow the respective precessing common parabolic patterns with trajectory curvatures that occurred in the outer jet regions at different core separations. The bulk Lorentz factor, Doppler factor, and viewing angle of their motion are derived. The unusual jet-direction change of ∼100° observed in 2010–2011 can be naturally explained. Conclusions. We propose a double-jet structure scenario for 3C279 and suggest that there may be a supermassive black hole binary in the center of 3C279 ejecting two precessing relativistic jets, resulting in its very complex structure and kinematics on parsec scales, and with extremely variable emission across the electromagnetic spectrum. Because the two jets have the same precession period, the precession of the double jet may have originated from the modulation of their jet orientation by the change in their orbital velocity direction relative to the observer. In this case the mass ratio m/M of the binary is approximately equal to the ratio of the jet cone widths, being on the order of ∼0.5.


2017 ◽  
Vol 851 (2) ◽  
pp. L39 ◽  
Author(s):  
Anderson Caproni ◽  
Zulema Abraham ◽  
Juliana Cristina Motter ◽  
Hektor Monteiro

2016 ◽  
Vol 12 (S324) ◽  
pp. 35-38
Author(s):  
Charles D. Bailyn

AbstractI discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined — as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.


2012 ◽  
Vol 08 ◽  
pp. 380-383
Author(s):  
ZSOLT PARAGI ◽  
TOMASO M. BELLONI ◽  
ALEXANDER J. VAN DER HORST ◽  
JAMES MILLER-JONES

The X-ray transient MAXI J1659-152 was discovered by Swift/BAT and it was initially identified as a GRB. Soon its Galactic origin and binary nature were established. There exists a wealth of multi-wavelength monitoring data for this source, providing a great coverage of the full X-ray transition in this candidate black hole binary system. We obtained two epochs of EVN/e-VLBI and four epochs of VLBA data of MAXI J1659-152 which show evidence for some extended emission in the early phases but –against expectations– no major collimated ejecta during the accretion disk state transition. This might be related to the fact that, with a red dwarf donor star, MAXI J1659-152 is the shortest orbital period black hole X-ray binary system.


2021 ◽  
pp. 17-24
Author(s):  
Anil Kyadampure ◽  
N.D. Vagshette ◽  
M.K. Patil

We present results based on analysis of the currently available 29.86 ks Chandra data on the Bright Group-Centered Galaxy (BGG) NGC 5846 of G50 group. A pair of X-ray cavities have been detected within a radius ? 1 kpc along the North-East and South-West directions. The analysis yielded the average cavity energy, ages and mechanical power equal to ~ 3:1 x 1048 erg, 0:61 x 107 yr and, 3:78 x 1041 erg s-1, respectively. The luminosity of X-ray emitting gas within the cooling radius (20 kpc) was found to be 2.4 x 1041 erg s??1, in agreement with the mechanical cavity power. The ratio of radio luminosity to mechanical cavity power is found to be 10??4. The Bondi accretion rate of the central supermassive black hole (SMBH) is ~ 5:95 x 10-5 M? yr-1 and the black-hole mass derived using the Bondi-accretion rate was found to be ~ 3:74 x 108 M?.


Sign in / Sign up

Export Citation Format

Share Document