scholarly journals Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare

2021 ◽  
Vol 923 (2) ◽  
pp. 213
Author(s):  
Yuqian Wei ◽  
Bin Chen ◽  
Sijie Yu ◽  
Haimin Wang ◽  
Ju Jing ◽  
...  

Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in Hα by the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hα and EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photospheric magnetogram. We conclude that the microwave counterpart of the erupting filament is likely due to flare-accelerated electrons injected into the filament-hosting magnetic flux rope cavity following the newly reconnected magnetic field lines.

2000 ◽  
Vol 64 (1) ◽  
pp. 41-55 ◽  
Author(s):  
J. M. SCHMIDT ◽  
P. J. CARGILL

The evolution of magnetic flux ropes in a sheared plasma flow is investigated. When the magnetic field outside the flux rope lies parallel to the axis of the flux rope, a flux rope of circular cross-section, whose centre is located at the midpoint of the shear layer, has its shape distorted, but remains in the shear layer. Small displacements of the flux-rope centre above or below the midpoint of the shear layer lead to the flux-rope being expelled from the shear layer. This motion arises because small asymmetries in the plasma pressure around the flux-rope boundary leads to a force that forces the flux rope into a region of uniform flow. When the magnetic field outside the flux rope lies in a plane perpendicular to the flux-rope axis, the flux rope and external magnetic field reconnect with each other, leading to the destruction of the flux rope.


1995 ◽  
Vol 13 (8) ◽  
pp. 815-827 ◽  
Author(s):  
C. J. Farrugia ◽  
V. A Osherovich ◽  
L. F. Burlaga

Abstract. We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ωcrit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed. Finally, considering interplanetary magnetic clouds as cylindrical flux ropes, we inquire whether they rotate. We find that at 1 AU only a minority do. We discuss data on two magnetic clouds where we interpret the presence in each of vortical plasma motion about the symmetry axis as a sign of rotation. Our estimates for the angular velocities suggest that the parameters of the two magnetic clouds are below critical values. The two clouds differ in many respects (such as age, bulk flow speed, size, handedness of the magnetic field, etc.), and we find that their rotational parameters reflect some of these differences, particularly the difference in age. In both clouds, a rough estimate of the radial electric field in the rigidly rotating core, calculated in a non-rotating frame, yields values of the order mV m–1.


2020 ◽  
Vol 644 ◽  
pp. A137
Author(s):  
A. W. James ◽  
L. M. Green ◽  
L. van Driel-Gesztelyi ◽  
G. Valori

Context. Many previous studies have shown that the magnetic precursor of a coronal mass ejection (CME) takes the form of a magnetic flux rope, and a subset of them have become known as “hot flux ropes” due to their emission signatures in ∼10 MK plasma. Aims. We seek to identify the processes by which these hot flux ropes form, with a view of developing our understanding of CMEs and thereby improving space weather forecasts. Methods. Extreme-ultraviolet observations were used to identify five pre-eruptive hot flux ropes in the solar corona and study how they evolved. Confined flares were observed in the hours and days before each flux rope erupted, and these were used as indicators of episodic bursts of magnetic reconnection by which each flux rope formed. The evolution of the photospheric magnetic field was observed during each formation period to identify the process(es) that enabled magnetic reconnection to occur in the β <  1 corona and form the flux ropes. Results. The confined flares were found to be homologous events and suggest flux rope formation times that range from 18 hours to 5 days. Throughout these periods, fragments of photospheric magnetic flux were observed to orbit around each other in sunspots where the flux ropes had a footpoint. Active regions with right-handed (left-handed) twisted magnetic flux exhibited clockwise (anticlockwise) orbiting motions, and right-handed (left-handed) flux ropes formed. Conclusions. We infer that the orbital motions of photospheric magnetic flux fragments about each other bring magnetic flux tubes together in the corona, enabling component reconnection that forms a magnetic flux rope above a flaring arcade. This represents a novel trigger mechanism for solar eruptions and should be considered when predicting solar magnetic activity.


2006 ◽  
Vol 24 (2) ◽  
pp. 651-666 ◽  
Author(s):  
P. D. Henderson ◽  
C. J. Owen ◽  
I. V. Alexeev ◽  
J. Slavin ◽  
A. N. Fazakerley ◽  
...  

Abstract. An investigation of the 2003 Cluster tail season has revealed small flux ropes in the near-tail plasma sheet of Earth. These flux ropes manifest themselves as a bipolar magnetic field signature (usually predominantly in the Z-component) associated with a strong transient peak in one or more of the other components (usually the Y-component). These signatures are interpreted as the passage of a cylindrical magnetic structure with a strong axial magnetic field over the spacecraft position. On the 2 October 2003 all four Cluster spacecraft observed a flux rope in the plasma sheet at X (GSM) ~-17 RE. The flux rope was travelling Earthward and duskward at ~160 kms-1, as determined from multi-spacecraft timing. This is consistent with the observed south-then-north bipolar BZ signature and corresponds to a size of ~0.3 RE (a lower estimate, measuring between the inflection points of the bipolar signature). The axis direction, determined from multi-spacecraft timing and the direction of the strong core field, was close to the intermediate variance direction of the magnetic field. The current inside the flux rope, determined from the curlometer technique, was predominantly parallel to the magnetic field. However, throughout the flux rope, but more significant in the outer sections, a non-zero component of current perpendicular to the magnetic field existed. This shows that the flux rope was not in a "constant α" force-free configuration, i.e. the magnetic force, J×B was also non-zero. In the variance frame of the magnetic field, the components of J×B suggest that the magnetic pressure force was acting to expand the flux rope, i.e. directed away from the centre of the flux rope, whereas the smaller magnetic tension force was acting to compress the flux rope. The plasma pressure is reduced inside the flux rope. A simple estimate of the total force acting on the flux rope from the magnetic forces and surrounding plasma suggests that the flux rope was experiencing an expansive total force. On 13 August 2003 all four Cluster spacecraft observed a flux rope at X (GSM) ~-18 RE. This flux rope was travelling tailward at 200 kms-1, consistent with the observed north-then-south bipolar BZ signature. The bipolar signature corresponds to a size of ~0.3 RE (lower estimate). In this case, the axis, determined from multi-spacecraft timing and the direction of the strong core field, was directed close to the maximum variance direction of the magnetic field. The current had components both parallel and perpendicular to the magnetic field, and J×B was again larger in the outer sections of the flux rope than in the centre. This flux rope was also under expansive magnetic pressure forces from J×B, i.e. directed away from the centre of the flux rope, and had a reduced plasma pressure inside the flux rope. A simple total force calculation suggests that this flux rope was experiencing a large expansive total force. The observations of a larger J×B signature in the outer sections of the flux ropes when compared to the centre may be explained if the flux ropes are observed at an intermediate stage of their evolution after creation by reconnection at multiple X lines near the Cluster apogee. It is suggested that these flux ropes are in the process of relaxing towards the force-free like configuration often observed further down the tail. The centre of the flux ropes may contain older reconnected flux at a later evolutionary stage and may therefore be more force-free.


2005 ◽  
Vol 13 ◽  
pp. 133-133
Author(s):  
M. Vandas ◽  
E. P. Romashets ◽  
S. Watari

AbstractMagnetic clouds are thought to be large flux ropes propagating through the heliosphere. Their twisted magnetic fields are mostly modeled by a constant-alpha force-free field in a circular cylindrical flux rope (the Lundquist solution). However, the interplanetary flux ropes are three dimensional objects. In reality they possibly have a curved shape and an oblate cross section. Recently we have found two force-free models of flux ropes which takes into account the mentioned features. These are (i) a constant-alpha force-free configuration in an elliptic flux rope (Vandas & Romashets 2003, A&A, 398, 801), and (ii) a non-constant-alpha force-free field in a toroid with arbitrary aspect ratio (Romashets & Vandas 2003, AIP Conf Ser. 679, 180). Two magnetic cloud observations were analyzed. The magnetic cloud of October 18-19, 1995 has been fitted by Lepping et al. (1997, JGR, 102, 14049) with use of the Lundquist solution. The cloud has a very flat magnetic field magnitude profile. We fitted it by the elliptic solution (i). The magnetic cloud of November 17-18, 1975 has been fitted by Marubashi (1997) with use of a toroidally adjusted Lundquist solution. The cloud has a large magnetic field vector rotation and a large magnetic field magnitude increase over the background level. We fitted it by the toroidal solution (ii). The both fits match the rotation of the magnetic field vector in a comparable quality to the former fits, but the description of the magnetic field magnitude profiles is remarkable better. It is possible to incorporate temporal effects (expansion) of magnetic clouds into the new solutions through a time-dependent alpha parameter as in Shimazu & Vandas (2002, EP&S, 54, 783).


2009 ◽  
Vol 27 (10) ◽  
pp. 4057-4067 ◽  
Author(s):  
M. J. Owens ◽  
N. U. Crooker ◽  
T. S. Horbury

Abstract. Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.


2018 ◽  
Vol 36 (2) ◽  
pp. 497-507 ◽  
Author(s):  
Rodrigo A. Miranda ◽  
Adriane B. Schelin ◽  
Abraham C.-L. Chian ◽  
José L. Ferreira

Abstract. In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness–kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope–rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind. Keywords. Space plasma physics (turbulence)


2020 ◽  
Vol 643 ◽  
pp. A19
Author(s):  
Maria S. Madjarska ◽  
Klaus Galsgaard ◽  
Duncan H. Mackay ◽  
Kostadinka Koleva ◽  
Momchil Dechev

Context. We report on the third part of a series of studies on eruptions associated with small-scale loop complexes named coronal bright points (CBPs). Aims. A single case study of a CBP in an equatorial coronal hole with an exceptionally large size is investigated to expand on our understanding of the formation of mini-filaments, their destabilisation, and the origin of the eruption triggering the formation of jet-like features recorded in extreme ultraviolet (EUV) and X-ray emission. We aim to explore the nature of the so-called micro-flares in CBPs associated with jets in coronal holes and mini coronal mass ejections in the quiet Sun. Methods. Co-observations from the Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory as well as GONG Hα images are used together with a non-linear force free field (NLFFF) relaxation approach, where the latter is based on a time series of HMI line-of-sight magnetograms. Results. A mini-filament (MF) that formed beneath the CBP arcade about 3−4 h before the eruption is seen in the Hα and EUV AIA images to lift up and erupt triggering the formation of an X-ray jet. No significant photospheric magnetic flux concentration displacement (convergence) is observed and neither is magnetic flux cancellation between the two main magnetic polarities forming the CBP in the time period leading to MF lift-off. The CBP micro-flare is associated with three flare kernels that formed shortly after the MF lift-off. No observational signature is found for magnetic reconnection beneath the erupting MF. The applied NLFFF modelling successfully reproduces both the CBP loop complex as well as the magnetic flux rope that hosts the MF during the build-up to the eruption. Conclusions. The applied NLFFF modelling is able to clearly show that an initial potential field can be evolved into a non-potential magnetic field configuration that contains free magnetic energy in the region that observationally hosts the eruption. The comparison of the magnetic field structure shows that the magnetic NLFFF model contains many of the features that can explain the different observational signatures found in the evolution and eruption of the CBP. In the future, it may eventually indicate the location of destabilisation that results in the eruptions of flux ropes.


2006 ◽  
Vol 24 (2) ◽  
pp. 603-618 ◽  
Author(s):  
H. Hasegawa ◽  
B. U. Ö. Sonnerup ◽  
C. J. Owen ◽  
B. Klecker ◽  
G. Paschmann ◽  
...  

Abstract. The structure and formation mechanism of a total of five Flux Transfer Events (FTEs), encountered on the equatorward side of the northern cusp by the Cluster spacecraft, with separation of ~5000 km, are studied by applying the Grad-Shafranov (GS) reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assumption that the structure is two-dimensional (2-D) and time-independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggesting that multiple X-line reconnection was involved in generating the observed FTEs. The dimension of the flux ropes in the direction normal to the magnetopause ranges from about 2000 km to more than 1 RE. The orientation of the flux rope axis can be determined through optimization of the GS map, the result being consistent with those from various single-spacecraft methods. Thanks to this, the unambiguous presence of a strong core field is confirmed, providing evidence for component merging. The amount of magnetic flux contained within each flux rope is calculated from the map and, by dividing it by the time interval between the preceding FTE and the one reconstructed, a lower limit of the reconnection electric field during the creation of the flux rope can be estimated; the estimated value ranges from ~0.11 to ~0.26 mV m-1, with an average of 0.19 mV m-1. This can be translated to the reconnection rate of 0.038 to 0.074, with an average of 0.056. Based on the success of the 2-D model in recovering the observed FTEs, the length of the X-lines is estimated to be at least a few RE.


2021 ◽  
Author(s):  
Yu Chen ◽  
Qiang Hu ◽  
Lingling Zhao

&lt;p&gt;Magnetic flux rope, formed by the helical magnetic field lines, can sometimes remain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by applying the Grad-Shafranov-based algorithm to the Parker Solar Probe (PSP) in-situ measurements in the first five encounters. These structures are detected at heliocentric distances, ranging from 0.13 to 0.66 au, in a total of 4-month time period. We find that flux ropes with field-aligned flows have certain properties similar to those of static flux ropes, such as the decaying relations of the magnetic fields within structures with respect to heliocentric distances. Moreover, these events are more likely with magnetic pressure dominating over the thermal pressure and occurring more frequently in the relatively fast-speed solar wind. Taking into account the high Alfvenicity, we also compare these events with switchbacks and present the cross-section maps via the new Grad-Shafranov type reconstruction. Finally, the possible evolution and relaxation of the magnetic flux rope structures are discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document